1
|
Ospina-Acevedo F, Albiter LA, Bailey KO, Godínez-Salomón JF, Rhodes CP, Balbuena PB. Catalytic Activity and Electrochemical Stability of Ru 1-xM xO 2 (M = Zr, Nb, Ta): Computational and Experimental Study of the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16373-16398. [PMID: 38502743 PMCID: PMC10995909 DOI: 10.1021/acsami.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
We use computations and experiments to determine the effect of substituting zirconium, niobium, and tantalum within rutile RuO2 on the structure, oxygen evolution reaction (OER) mechanism and activity, and electrochemical stability. Calculated electronic structures altered by Zr, Nb, and Ta show surface regions of electron density depletion and accumulation, along with anisotropic lattice parameter shifts dependent on the substitution site, substituent, and concentration. Consistent with theory, X-ray photoelectron spectroscopy experiments show shifts in binding energies of O-2s, O-2p, and Ru-4d peaks due to the substituents. Experimentally, the substituted materials showed the presence of two phases with a majority phase that contains the metal substituent within the rutile phase and a second, smaller-percentage RuO2 phase. Our experimental analysis of OER activity shows Zr, Nb, and Ta substituents at 12.5 atom % induce lower activity relative to RuO2, which agrees with computing the average of all sites; however, Zr and Ta substitution at specific sites yields higher theoretical OER activity than RuO2, with Zr substitution suggesting an alternative OER mechanism. Metal dissolution predictions show the involvement of cooperative interactions among multiple surface sites and the electrolyte. Zr substitution at specific sites increases activation barriers for Ru dissolution, however, with Zr surface dissolution rates comparable to those of Ru. Experimental OER stability analysis shows lower Ru dissolution from synthesized RuO2 and Zr-substituted RuO2 compared to commercial RuO2 and comparable amounts of Zr and Ru dissolved from Zr-substituted RuO2, aligned with our calculations.
Collapse
Affiliation(s)
- Francisco Ospina-Acevedo
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Luis A. Albiter
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Kathleen O. Bailey
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | | | - Christopher P. Rhodes
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | - Perla B. Balbuena
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Fenoll D, Sodupe M, Solans-Monfort X. Influence of Capping Ligands, Solvent, and Thermal Effects on CdSe Quantum Dot Optical Properties by DFT Calculations. ACS OMEGA 2023; 8:11467-11478. [PMID: 37008094 PMCID: PMC10061629 DOI: 10.1021/acsomega.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Cadmium selenide nanomaterials are very important materials in photonics, catalysis, and biomedical applications due to their optical properties that can be tuned through size, shape, and surface passivation. In this report, static and ab initio molecular dynamics density functional theory (DFT) simulations are used to characterize the effect of ligand adsorption on the electronic properties of the (110) surface of zinc blende and wurtzite CdSe and a (CdSe)33 nanoparticle. Adsorption energies depend on ligand surface coverage and result from a balance between chemical affinity and ligand-surface and ligand-ligand dispersive interactions. In addition, while little structural reorganization occurs upon slab formation, Cd···Cd distances become shorter and the Se-Cd-Se angles become smaller in the bare nanoparticle model. This originates mid-gap states that strongly influence the absorption optical spectra of nonpassivated (CdSe)33. Ligand passivation on both zinc blende and wurtzite surfaces does not induce a surface reorganization, and thus, the band gap remains nonaffected with respect to bare surfaces. In contrast, structural reconstruction is more apparent for the nanoparticle, which significantly increases its highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap upon passivation. Solvent effects decrease the band gap difference between the passivated and nonpassivated nanoparticles, the maximum of the absorption spectra being blue-shifted around 20 nm by the effect of the ligands. Overall, calculations show that flexible surface cadmium sites are responsible for the appearance of mid-gap states that are partially localized on the most reconstructed regions of the nanoparticle that can be controlled through appropriate ligand adsorption.
Collapse
|
3
|
Cheng Y, Li RZ, Xu XY, Lu L. Density functional theory study of the reaction between VO− and water. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Geppert J, Röse P, Czioska S, Escalera-López D, Boubnov A, Saraçi E, Cherevko S, Grunwaldt JD, Krewer U. Microkinetic Analysis of the Oxygen Evolution Performance at Different Stages of Iridium Oxide Degradation. J Am Chem Soc 2022; 144:13205-13217. [PMID: 35850525 PMCID: PMC9335572 DOI: 10.1021/jacs.2c03561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
The microkinetics
of the electrocatalytic oxygen evolution reaction
substantially determines the performance in proton-exchange membrane
water electrolysis. State-of-the-art nanoparticulated rutile IrO2 electrocatalysts present an excellent trade-off between activity
and stability due to the efficient formation of intermediate surface
species. To reveal and analyze the interaction of individual surface
processes, a detailed dynamic microkinetic model approach is established
and validated using cyclic voltammetry. We show that the interaction
of three different processes, which are the adsorption of water, one
potential-driven deprotonation step, and the detachment of oxygen,
limits the overall reaction turnover. During the reaction, the active
IrO2 surface is covered mainly by *O, *OOH, and *OO adsorbed
species with a share dependent on the applied potential and of 44,
28, and 20% at an overpotential of 350 mV, respectively. In contrast
to state-of-the-art calculations of ideal catalyst surfaces, this
novel model-based methodology allows for experimental identification
of the microkinetics as well as thermodynamic energy values of real
pristine and degraded nanoparticles. We show that the loss in electrocatalytic
activity during degradation is correlated to an increase in the activation
energy of deprotonation processes, whereas reaction energies were
marginally affected. As the effect of electrolyte-related parameters
does not cause such a decrease, the model-based analysis demonstrates
that material changes trigger the performance loss. These insights
into the degradation of IrO2 and its effect on the surface
processes provide the basis for a deeper understanding of degrading
active sites for the optimization of the oxygen evolution performance.
Collapse
Affiliation(s)
- Janis Geppert
- Institute for Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, Adenauerring 20b, Karlsruhe 76131, Germany
| | - Philipp Röse
- Institute for Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, Adenauerring 20b, Karlsruhe 76131, Germany
| | - Steffen Czioska
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany
| | - Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
| | - Alexey Boubnov
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany.,Institute of Catalysis Reasearch and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Erisa Saraçi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany.,Institute of Catalysis Reasearch and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, Erlangen 91058, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, Engesserstr. 20, Karlsruhe 76131, Germany.,Institute of Catalysis Reasearch and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ulrike Krewer
- Institute for Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, Adenauerring 20b, Karlsruhe 76131, Germany
| |
Collapse
|
5
|
Hydrothermal modification of TiO2 nanotubes in water and alkali metal electrolytes (LiNO3, NaNO3, KNO3) - direct evidence for photocatalytic activity enhancement. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Metal Coordination Determines the Catalytic Activity of IrO2 Nanoparticles for the Oxygen Evolution Reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Theoretical and Experimental Study of the Effects of Cobalt and Nickel Doping within IrO2 on the Acidic Oxygen Evolution Reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Pantaleone S, Rimola A, Ugliengo P, Sodupe M. First-Principles Modeling of Protein/Surface Interactions. Polyglycine Secondary Structure Adsorption on the TiO 2 (101) Anatase Surface Adopting a Full Periodic Approach. J Chem Inf Model 2021; 61:5484-5498. [PMID: 34752107 DOI: 10.1021/acs.jcim.1c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computational modeling of protein/surface systems is challenging since the conformational variations of the protein and its interactions with the surface need to be considered at once. Adoption of first-principles methods to this purpose is overwhelming and computationally extremely expensive so that, in many cases, dramatically simplified systems (e.g., small peptides or amino acids) are used at the expenses of modeling nonrealistic systems. In this work, we propose a cost-effective strategy for the modeling of peptide/surface interactions at a full quantum mechanical level, taking the adsorption of polyglycine on the TiO2 (101) anatase surface as a test case. Our approach is based on applying the periodic boundary conditions for both the surface model and the polyglycine peptide, giving rise to full periodic polyglycine/TiO2 surface systems. By proceeding this way, the considered complexes are modeled with a drastically reduced number of atoms compared with the finite-analogous systems, modeling the polypeptide structures at the same time in a realistic way. Within our modeling approach, full periodic density functional theory calculations (including implicit solvation effects) and ab initio molecular dynamics (AIMD) simulations at the PBE-D2* theory level have been carried out to investigate the adsorption and relative stability of the different polyglycine structures (i.e., extended primary, β-sheet, and α-helix) on the TiO2 surface. It has been found that, upon adsorption, secondary structures become partially denatured because the peptide C═O groups form Ti-O═C dative bonds. AIMD simulations have been fundamental to identify these phenomena because thermal and entropic effects are of paramount importance. Irrespective of the simulated environments (gas phase and implicit solvent), adsorption of the α-helix is more favorable than that of the β-sheet because in the former, more Ti-O═C bonds are formed and the adsorbed secondary structure results less distorted with respect to the isolated state. Under the implicit water solvent, additionally, adsorbed β-sheet structures weaken with respect to their isolated states as the H-bonds between the strands are longer due to solvation effects. Accordingly, the results indicate that the preferred conformation upon adsorption is the α-helix over the β-sheet.
Collapse
Affiliation(s)
- Stefano Pantaleone
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Catalonia, Spain.,Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Inter-Departmental Centre, Università degli Studi di Torino, Via P. Giuria 7, Torino 10125, Italy.,Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, Perugia I-06123, Italy
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Catalonia, Spain
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Inter-Departmental Centre, Università degli Studi di Torino, Via P. Giuria 7, Torino 10125, Italy
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Catalonia, Spain
| |
Collapse
|
9
|
González D, Sodupe M, Rodríguez-Santiago L, Solans-Monfort X. Surface morphology controls water dissociation on hydrated IrO 2 nanoparticles. NANOSCALE 2021; 13:14480-14489. [PMID: 34473817 DOI: 10.1039/d1nr03592d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iridium oxide is a highly efficient catalyst for the oxygen evolution reaction, whose large-scale application requires decreasing the metal content. This is achieved using small nanoparticles. The knowledge of the water-IrO2 nanoparticle interface is of high importance to understand the IrO2 behavior as electrocatalyst in aqueous solutions. In this contribution, DFT (PBE-D2) calculations and AIMD simulations on IrO2 nanoparticle models of different sizes ((IrO2)33 and (IrO2)115) are performed. Results show that two key factors determine the H2O adsorption energy and the preferred adsorption structure (molecular or dissociated water): metal coordination and hydrogen bonding with oxygen bridge atoms of the IrO2 surface. Regarding metal coordination, and since the tetragonal distortion existing in IrO2 is retained on the nanoparticle models, the adsorption at iridium axial vacant sites implies stronger Ir-H2O interactions, which favors water dissociation. In contrast, Ir-H2O interaction at equatorial vacant sites is weaker and thus the relative stability of molecular and dissociated forms becomes similar. Hydrogen bonding increases adsorption energy and favors water dissociation. Thus, tip and corner sites of the nanoparticle, with no oxygen bridge atoms nearby, exhibit the smallest adsorption energies and a preference for the molecular form. Overall, the presence of rather isolated tip and corner sites in the nanoparticle leads to lower adsorption energies and a smaller degree of water dissociation when compared with extended surfaces.
Collapse
Affiliation(s)
- Danilo González
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
10
|
Geppert J, Kubannek F, Röse P, Krewer U. Identifying the oxygen evolution mechanism by microkinetic modelling of cyclic voltammograms. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
González D, Heras-Domingo J, Sodupe M, Rodríguez-Santiago L, Solans-Monfort X. Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
pH Sensitivity Estimation in Potentiometric Metal Oxide pH Sensors Using the Principle of Invariance. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/5551259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A numerically solvable engineering model has been proposed that predicts the sensitivity of metal oxide- (MOX-) based potentiometric pH sensors. The proposed model takes into account the microstructure and crystalline structure of the MOX material. The predicted pH sensitivities are consistent with experimental results with the difference below 6% across three MOX (RuO2, TiO2, and Ta2O5) analysed. The model distinguishes the performance of different MOX phases by the appropriate choice of surface hydroxyl site densities and dielectric constants, making it possible to estimate the performance of MOX electrodes fabricated through different high-temperature and low-temperature annealing methods. It further addresses the problem, cited by theoreticians, of independently determining the C1 inner Helmholtz capacitance parameter while applying the triple-layer model to pH sensors. This is done by varying the C1 capacitance parameter until an invariant pH sensitivity across different electrolyte ionic strengths is obtained. This invariance point identifies the C1 capacitance. The corresponding pH sensitivity is the characteristic sensitivity of MOX. The model has been applied across different types of metal oxides, namely, expensive platinum group oxides (RuO2) and cheaper nonplatinum group MOX (TiO2 and Ta2O5). High temperature annealed, RuO2 produced a high pH sensitivity of 59.1082 mV/pH, while TiO2 and Ta2O5 produced sub-Nernstian sensitivities of 30.0011 and 34.6144 mV/pH, respectively. Low temperature annealed, TiO2 and Ta2O5 produced Nernstian sensitivities of 59.1050 and 59.1081 mV/pH, respectively, illustrating the potential of using cheaper nonplatinum group MOx as alternative sensor electrode materials. Separately, the usefulness of relatively less investigated, cheap, and readily available MOX, viz. Al2O3, as the electrode material was analysed. Low-temperature-annealed Al2O3 with a Nernstian sensitivity of 59.1050 mV/pH can be considered as a potential electrode material. The proposed engineering model can be used as a preliminary prediction mechanism for choosing potentially cheaper alternative sensor electrode materials.
Collapse
|
13
|
Islas-Vargas C, Guevara-García A, Galván M. Electronic structure behavior of PbO 2, IrO 2, and SnO 2 metal oxide surfaces (110) with dissociatively adsorbed water molecules as a function of the chemical potential. J Chem Phys 2021; 154:074704. [PMID: 33607881 DOI: 10.1063/5.0035208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A detailed analysis of the electronic structure of three different electrochemical interfaces as a function of the chemical potential (μ) is performed using the grand canonical density functional theory in the joint density functional theory formulation. Changes in the average number of electrons and the density of states are also described. The evaluation of the global softness, which measures the tendency of the system to gain or lose electrons, is straightforward under this formalism. The observed behavior of these quantities depends on the electronic nature of the electrochemical interfaces.
Collapse
Affiliation(s)
- Claudia Islas-Vargas
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Química, CP 09340 México, Mexico
| | - Alfredo Guevara-García
- CONACYT-Universidad Autónoma Metropolitana Iztapalapa, Departamento de Química, CP 09340 México, Mexico
| | - Marcelo Galván
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Química, CP 09340 México, Mexico
| |
Collapse
|
14
|
Sánchez-Férez F, Solans-Monfort X, Calvet T, Font-Bardia M, Pons J. Influence of Aromatic Cations on the Structural Arrangement of Hg(II) Halides. ACS OMEGA 2020; 5:29357-29372. [PMID: 33225167 PMCID: PMC7676345 DOI: 10.1021/acsomega.0c04175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the structure and arrangement of hybrid metal halides and their contribution to the optoelectronic properties is, thus far, a challenging topic. In particular, new materials composed of d10 metal halides and pyridinium cations are still largely unexplored. Therefore, we report the synthesis and characterization of six Hg(II) salts built up from (Hg2Cl6)2- or (HgX4)2- anions (X = Cl, Br, I) and 2,2'-bipyridium (2,2'-Hbipy)+, 2,2'-bipyridine-1,1'-diium (2,2'-H2bipy)2+, or 1,10-phenantrolinium (1,10-Hphen)+ cations, using the same experimental conditions. All of them have been characterized by PXRD, EA, FTIR-ATR, and 1H NMR spectroscopies; single-crystal X-ray diffraction; and TG/DTA determinations. The study of their packing via Hirshfeld surface analysis and 3D deformation density mapping revealed the contributions of the intermolecular interactions to the structural arrangement, notably, the effect of the cation planarity on them. Successively, periodic DFT calculations showed that (i) the valence and conducting bands are mainly composed of the p orbitals of the halide and the organic cation, respectively, and (ii) the corresponding band gap depends mainly on the halide.
Collapse
Affiliation(s)
- Francisco Sánchez-Férez
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Xavier Solans-Monfort
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Teresa Calvet
- Departament
de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, Barcelona 08028, Spain
| | - Mercè Font-Bardia
- Unitat
de Difracció de Raig-X, Centres Científics i Tecnològics
de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, Barcelona 08028, Spain
| | - Josefina Pons
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
15
|
Valadez Huerta G, Raabe G. Genetic Parameterization of Interfacial Force Fields Based on Classical Bulk Force Fields and Ab Initio Data: Application to the Methanol-ZnO Interfaces. J Chem Inf Model 2020; 60:6033-6043. [DOI: 10.1021/acs.jcim.0c01093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Valadez Huerta
- Institut für Thermodynamik, Technische Universität Braunschweig, Hans-Sommer-Straße 5, D-38106 Braunschweig, Germany
| | - Gabriele Raabe
- Institut für Thermodynamik, Technische Universität Braunschweig, Hans-Sommer-Straße 5, D-38106 Braunschweig, Germany
| |
Collapse
|
16
|
Nada H, Kobayashi M, Kakihana M. Anisotropy in Stable Conformations of Hydroxylate Ions between the {001} and {110} Planes of TiO 2 Rutile Crystals for Glycolate, Lactate, and 2-Hydroxybutyrate Ions Studied by Metadynamics Method. ACS OMEGA 2019; 4:11014-11024. [PMID: 31460199 PMCID: PMC6648721 DOI: 10.1021/acsomega.9b01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Control over TiO2 rutile crystal growth and morphology using additives is essential for the development of functional materials. Computer simulation studies on the thermodynamically stable conformations of additives at the surfaces of rutile crystals contribute to understanding the mechanisms underlying this control. In this study, a metadynamics method was combined with molecular dynamics simulations to investigate the thermodynamically stable conformations of glycolate, lactate, and 2-hydroxybutyrate ions at the {001} and {110} planes of rutile crystals. Two simple atom-atom distances were selected as collective variables for the metadynamics method. At the {001} plane, a conformation in which the COO- group was oriented toward the surface was found to be the most stable for the lactate and 2-hydroxybutyrate ions, whereas a conformation in which the COO- group was oriented toward water was the most stable for the glycolate ion. At the {110} plane, a conformation in which the COO- group was oriented toward the surface was the most stable for all three hydroxylate ions, and a second most stable conformation was also observed for the lactate ion at positions close to the {110} plane. For all three hydroxylate ions (α-hydroxycarboxylate ions), the stability of the most stable conformation was higher for the {110} plane than for the {001} plane. At both planes, the stability of the most stable conformation was highest for the 2-hydroxybutyrate ion and lowest for the glycolate ion. Supposing that all three hydroxylate ions serve to decrease the surface free energy at the rutile surface and that a more stable conformation at the rutile surface leads to a greater decrease in the surface free energy, the present results partially explain experimentally observed differences in the changes in growth rate and morphology of rutile crystals in the presence of glycolic, lactic, and 2-hydroxybutyric acids.
Collapse
Affiliation(s)
- Hiroki Nada
- National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Makoto Kobayashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masato Kakihana
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|