1
|
Puente AR, Polavarapu PL. Influence of microsolvation on vibrational circular dichroism spectra in dimethyl sulfoxide solvent: A Bottom-Up approach using Quantum cluster growth. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123231. [PMID: 37562213 DOI: 10.1016/j.saa.2023.123231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Chiroptical spectroscopic measurements serve as routine methods to assign the absolute configuration of chiral compounds and interpret their conformational behavior in solution. One common challenge is the use of strongly hydrogen-bonding solvents, which can significantly bias the conformational ensemble and affect the vibrational circular dichroism (VCD) active bands in solution. One such solvent is dimethyl sulfoxide (DMSO)-an excellent solvent for stubborn compounds-that must be explicitly considered in VCD analysis. Explicit consideration of solvent remains a critical challenge in chiroptical spectroscopy due to the need to explore solute-solvent conformational space and the computational expense in modeling these clusters. Interested in the recent development of the Quantum Cluster Growth (QCG) program by the Grimme lab, we set out to model and interpret previously reported VCD spectra for several molecules using their efficient program. Our purposes are two-fold: (1) to investigate the applicability of the QCG program to the problem of reproducing VCD spectra in DMSO solvent and (2) to identify limitations in using this approach. We find that we can conveniently model and analyze the VCD spectra of investigated molecules in DMSO. However, the final set of conformers used for VCD calculations are functional dependent and different sets of conformers can provide satisfactory quantitative agreement between experimental and predicted VCD spectra. We hope that this study provides guidance for future chiroptical studies in the challenging DMSO solvent.
Collapse
Affiliation(s)
- Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
2
|
Dupont J, Lepère V, Zehnacker A, Hartweg S, Garcia GA, Nahon L. Photoelectron Circular Dichroism as a Signature of Subtle Conformational Changes: The Case of Ring Inversion in 1-Indanol. J Phys Chem Lett 2022; 13:2313-2320. [PMID: 35245057 DOI: 10.1021/acs.jpclett.2c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chirality plays a fundamental role in the molecular recognition processes. Molecular flexibility is also crucial in molecular recognition, allowing the interacting molecules to adjust their structures and hence optimize the interaction. Methods probing simultaneously chirality and molecular conformation are therefore crucially needed. Taking advantage of a possible control in the gas phase of the conformational distribution between the equatorial and axial conformers resulting from a ring inversion in jet-cooled 1-indanol, we demonstrate here the sensitivity of valence-shell photoelectron circular dichroism (PECD) to both chirality and subtle conformational changes, in a case where the photoelectron spectra of the two conformers are identical. For the highest occupied orbital, we observe a dramatic inversion of the PECD-induced photoelectron asymmetries, while the photoionization cross-section and usual anisotropy (β) parameter are completely insensitive to conformational isomerism. Such a sensitivity is a major asset for the ongoing developments of PECD-based techniques as a sensitive chiral (bio)chemical analytical tool in the gas phase.
Collapse
Affiliation(s)
- Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Valéria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Sebastian Hartweg
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Gustavo A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Laurent Nahon
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| |
Collapse
|
3
|
Le Barbu-Debus K, Zehnacker A. Competition between inter and intramolecular hydrogen bond evidenced by vibrational circular dichroism spectroscopy: The case of (1S,2R)-(-)-cis-1-amino-2-indanol. Chirality 2021; 33:858-874. [PMID: 34570370 DOI: 10.1002/chir.23362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
The infrared (IR) absorption and vibrational circular dichroism (VCD) spectra of an intramolecularly hydrogen-bonded chiral amino-alcohol, (1S,2R)-(-)-cis-1-amino-2-indanol, are studied in DMSO-d6 . The spectra are simulated at the density functional theory (DFT) level within the frame of the cluster-in-the-liquid model. Both IR and VCD spectra show a clear signature of the formation of intermolecular hydrogen bonds at the detriment of the intramolecular OH … N interaction present in the isolated molecule. Two solvent molecules are necessary to reproduce the experimental spectra. Whereas the first DMSO molecule captures the main spectral modifications due to hydrogen bond formation between the solute and the solvent, the second DMSO molecule is necessary for a good description of the Boltzmann contribution of the different complexes, based on their Gibbs free energy.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| |
Collapse
|
4
|
Kumar P, Shirke RP, Yadav S, Ramasastry SSV. Catalytic Enantioselective Synthesis of Axially Chiral Diarylmethylidene Indanones. Org Lett 2021; 23:4909-4914. [PMID: 34100619 DOI: 10.1021/acs.orglett.1c01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the first atropselective Suzuki-Miyaura cross-coupling of β-keto enol triflates to access axially chiral (Z)-diarylmethylidene indanones (DAIs). The chemical, physical, and biological properties of DAIs are unknown, despite their being structurally similar to arylidene indanones, primarily due to the lack of racemic or chiral methods. Through this work, we demonstrate a general and efficient protocol for the racemic as well as the atropselective synthesis of (Z)-DAIs. An unusual intramolecular Morita-Baylis-Hillman reaction is utilized for the Z-selective synthesis of β-keto enol triflates.
Collapse
Affiliation(s)
- Prashant Kumar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Rajendra P Shirke
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Sonu Yadav
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| |
Collapse
|
5
|
Polavarapu PL, Santoro E, Covington CL, Johnson JL, Puente AR, Schley ND, Kallingathodi Z, Prakasan PC, Haleema S, Thomas AA, Ibnusaud I. How important are the intermolecular hydrogen bonding interactions in methanol solvent for interpreting the chiroptical properties? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119094. [PMID: 33142265 DOI: 10.1016/j.saa.2020.119094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Two crispine A analogs and tetrahydrofuro[2,3-b]furan-3,3a(6aH)-diol, endowed with hydroxyl groups that can participate in intramolecular hydrogen bonding, have been synthesized and experimental vibrational circular dichroism (VCD) spectra and optical rotatory dispersion (ORD) data have been measured in CD3OD/CH3OH solvents. The absolute configurations (ACs) of these compounds have been determined using their synthetic schemes, supplemented wherever possible with X-ray diffraction data. The ACs are also analyzed with quantum chemical (QC) calculations of VCD and ORD utilizing implicit solvation as well as explicit solvation models, with the later employing classical molecular dynamics (MD) simulations. It is found that VCD calculations with implicit solvation model are adequate for determining the ACs, despite propensity of studied compounds for intermolecular hydrogen bonding between solute and solvent molecules. This observation is important because time-consuming MD simulations may not be necessary in the type of situations studied here. Additionally, it is found that the QC predicted VCD spectra provided enough diastereomer discrimination for determining the correct AC of studied compounds independently. The same observation did not apply to ORD.
Collapse
Affiliation(s)
| | - Ernesto Santoro
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Cody L Covington
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Austin Peay State University, Clarksville, TN 37044, USA
| | - Jordan L Johnson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Zabeera Kallingathodi
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Prasanth C Prakasan
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Simimole Haleema
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Annu Anna Thomas
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Ibrahim Ibnusaud
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India.
| |
Collapse
|
6
|
Intermolecular C-H∙∙∙H-M dihydrogen bonds in five-membered heterocyclic complexes: a DFT and ab-initio study. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02680-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Koenis MAJ, Visser O, Visscher L, Buma WJ, Nicu VP. GUI Implementation of VCDtools, A Program to Analyze Computed Vibrational Circular Dichroism Spectra. J Chem Inf Model 2020; 60:259-267. [PMID: 31830414 PMCID: PMC6988127 DOI: 10.1021/acs.jcim.9b00956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
As
computing power increases, vibrational circular dichroism (VCD)
calculations on molecules of larger sizes and complexities become
possible. At the same time, the spectra resulting from these computations
become increasingly more cumbersome to analyze. Here, we describe
the GUI implementation into the Amsterdam Density Functional (ADF)
software package of VCDtools, a toolbox that provides a user-friendly
means to analyze VCD spectra. Key features are the use of the generalized
coupled oscillator analysis methods, as well as an easy visualization
of the atomic electric and magnetic transition dipole moments which
together provide detailed insight in the origin of the VCD intensity.
Using several prototypical examples we demonstrate the functionalities
of the program. In particular, we show how the spectra can be analyzed
to detect differences between theory and experiment arising from large-amplitude
motions or incorrect molecular structures and, most importantly, how
the program can be used to prevent incorrect enantiomeric assignments.
Collapse
Affiliation(s)
- Mark A J Koenis
- Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Olivier Visser
- Software for Chemisty and Materials , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Lucas Visscher
- Amsterdam Center for Multiscale Modeling, Section Theoretical Chemistry, Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Wybren J Buma
- Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7c , 6525 ED Nijmegen , The Netherlands
| | - Valentin P Nicu
- Department of Environmental Science, Physics, Physical Education and Sport , Lucian Blaga University of Sibiu , loan Ratiu Street, Number 7-9 , 550012 Sibiu , Romania
| |
Collapse
|