1
|
Abd-El-Raoof F, Youssef H, El-Sokkary T, Abd El-Shakour Z, Tawfik A. Fabrication and characterization of calcium aluminates cement via microwave-hydrothermal route: Mayenite, katoite, and hydrocalumite. CONSTRUCTION AND BUILDING MATERIALS 2023; 401:132988. [DOI: 10.1016/j.conbuildmat.2023.132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Yi X, Song L, Ouyang S, Wang N, Chen H, Wang J, Lv J, Ye J. Cost-Efficient Photovoltaic-Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron-Molybdenum Oxides for Potential Large-Scale Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102222. [PMID: 34411433 DOI: 10.1002/smll.202102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Unassisted photovoltaic (PV) water splitting to hydrogen system is of great potential for future environmental-friendly fuel production from renewable solar energy. However, industrialization simultaneously requires higher efficiency, sustained stability and a lower cost for the system. In this work, the ultrathin cobalt/iron-molybdenum oxides nanosheet on nickel foam (NF) is prepared for efficient HER and OER, respectively, delivering a relatively low voltage of 1.45 V at 10 mA cm-2 in two-electrodes configuration. Water electrolysis at low voltage driven by electrocatalysts is critical for realizing energy conversion. Integrated with a commercial monocrystalline silicon cell, the H2 area specific activity of 0.47 L m-2 h-1 is achieved with a solar-to-hydrogen efficiency of 15.1% under solar simulator illumination (100 mW cm-2 ) and no performance degradation appeares over 160 h. Such a solar conversion technology demonstrates the potential for long-term and cost-efficient H2 production in large-scale industrialization and provides an exploration for new-type of energy-conversion system.
Collapse
Affiliation(s)
- Xinli Yi
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lizhu Song
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuxin Ouyang
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Huayu Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Jianbo Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jun Lv
- Electronic Information Engineering College, Sanjiang University, Nanjing, 210012, P. R. China
- School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2033, Australia
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0047, Japan
| |
Collapse
|
3
|
Nityashree N, Manohara GV, Maroto-Valer MM, Garcia S. Advanced High-Temperature CO 2 Sorbents with Improved Long-Term Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33765-33774. [PMID: 32609484 DOI: 10.1021/acsami.0c08652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing novel sorbents with maximum carbonation efficiency and good cycling stability for CO2 capture is a promising route to sequester anthropogenic CO2. In this work, we have employed a green synthesis method to synthesize CaO-based sorbents suitably stabilized by MgO and supported by in situ generated carbon under inert atmosphere. The varied amounts (10-30 wt %) of MgO were used to stabilize the CaO. The supported mixed metal oxide (MMO) sorbents were screened for high-temperature CO2 capture under CO2 rich (86% CO2) and lean (14% CO2) gas streams at 650 °C and atmospheric pressure. The MMO sorbents captured 53-63 wt % of CO2 per gram of sorbent under 86 and 14% CO2, accounting for about 98% carbonation efficiency, which outperforms the CO2 capture capacity of limestone derived CaO (L-CaO) sorbents (22.8 wt %). All of the synthetic MMO sorbents showed greater capture capacity and cyclic stability when compared to benchmark L-CaO. Because of the high carbonation efficiency and cycling stability of g-Ca0.69Mg0.3O sorbent, it was tested for 100 carbonation/regeneration cycles of 5 min each under CO2 lean conditions. The g-Ca0.69Mg0.3O sorbent showed exceptional CO2 capture capacity and cycling stability and retained about 65% of its initial capture capacity after 100 cycles.
Collapse
Affiliation(s)
- N Nityashree
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - G V Manohara
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - S Garcia
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
4
|
Effects of Immobilized Ionic Liquid on Properties of Biodegradable Polycaprolactone/LDH Nanocomposites Prepared by In Situ Polymerization and Melt-Blending Techniques. NANOMATERIALS 2020; 10:nano10050969. [PMID: 32443604 PMCID: PMC7712423 DOI: 10.3390/nano10050969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022]
Abstract
The high capacity of calcinated layered double hydroxides (LDH) to immobilize various active molecules together with their inherent gas/vapor impermeability make these nanoparticles highly promising to be applied as nanofillers for biodegradable polyester packaging. Herein, trihexyl(tetradecyl)phosphonium decanoate ionic liquid (IL) was immobilized on the surface of calcinated LDH. Thus, the synthesized nanoparticles were used for the preparation of polycaprolactone (PCL)/LDH nanocomposites. Two different methods of nanocomposite preparation were used and compared: microwave-assisted in situ ring opening polymerization (ROP) of ε-caprolactone (εCL) and melt-blending. The in situ ROP of εCL in the presence of LDH nanoparticles with the immobilized IL led to homogenous nanofiller dispersion in the PCL matrix promoting formation of large PCL crystallites, which resulted in the improved mechanical, thermal and gas/water vapor barrier properties of the final nanocomposite. The surface-bonded IL thus acted as nanofiller surfactant, compatibilizer, as well as thermal stabilizer of the PCL/LDH nanocomposites. Contrary to that, the melt-blending caused a partial degradation of the immobilized IL and led to the production of PCL nanocomposites with a heterogenous nanofiller dispersion having inferior mechanical and gas/water vapor barrier properties.
Collapse
|