1
|
Yadav MS, Jaiswal MK, Kumar S, Singh SK, Ansari FJ, Tiwari VK. One-pot expeditious synthesis of glycosylated esters through activation of carboxylic acids using trichloroacetonitrile. Carbohydr Res 2022; 521:108674. [PMID: 36126412 DOI: 10.1016/j.carres.2022.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Acetimidates, a valuable intermediate has been well explored as versatile synthon in a number of organic transformations particularly as suitable donors in glycosylation reactions. Herein, we explored acetimidates to furnish high-to-excellent yield of diverse glycosylated esters under one-pot mild reaction condition. The commercially available trichloroacetonitrile is implemented for the activation of carboxylic acid via in situ generation of trichloroacetimidate, which was subsequently attacked by sugar alcohols to deliver high-to-excellent yields of desired glycosylated esters. The devised method has some notable features such as metal-free condition, one-pot mild reaction condition, easy-handling, high-to-excellent yields, and broad substrate scope.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Akter M, Rupa K, Anbarasan P. 1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds. Chem Rev 2022; 122:13108-13205. [DOI: 10.1021/acs.chemrev.1c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
3
|
Hethcox JC, Sifri RJ. Air-Tolerant Nickel-Catalyzed Cyanation of (Hetero)aryl Halides Enabled by Polymethylhydrosiloxane, a Green Reductant. J Org Chem 2022; 87:4951-4954. [PMID: 35316048 DOI: 10.1021/acs.joc.1c02939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An air-tolerant nickel-catalyzed cyanation of aryl bromides is reported. The reaction uses a NiCl2/Xantphos catalyst in combination with substoichiometric quantities of zinc cyanide and polymethylhydrosiloxane. This silane is a green, homogeneous alternative to the traditional, insoluble solid reductant zinc and renders the reaction tolerant to air. The reaction can be performed under an air atmosphere, obviating the need for degassing, a glovebox, or Schlenk techniques. The reaction scope is broad, proceeding in good yields with a variety of (hetero)arenes.
Collapse
Affiliation(s)
- J Caleb Hethcox
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Renee J Sifri
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Tai ZS, Othman MHD, Mustafa A, Ravi J, Wong KC, Koo KN, Hubadillah SK, Azali MA, Alias NH, Ng BC, Mohamed Dzahir MIH, Ismail AF, Rahman MA, Jaafar J. Development of hydrophobic polymethylhydrosiloxane/tetraethylorthosilicate (PMHS/TEOS) hybrid coating on ceramic membrane for desalination via membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
6
|
Tiwari VK. Development of Diverse Range of Biologically Relevant Carbohydrate-Containing Molecules: Twenty Years of Our Journey*. CHEM REC 2021; 21:3029-3048. [PMID: 34047444 DOI: 10.1002/tcr.202100058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Indexed: 11/12/2022]
Abstract
There is an increasing demand for significant amount of carbohydrate-containing molecules owing to their complete chemical, biological, and pharmacological investigations to better understand their role in many important biological events. Clinical studies of a wide range of simple carbohydrates or their derivatives, glycohybrids, glycoconjugates, and neoglycoconjugates have been conducted worldwide for the successful treatment of various frontline diseases. Herein, a brief perspective of carbohydrate-based molecular scaffolding and my experience during the last 20 years in the area of synthetic carbohydrate chemistry, mainly for their impact in drug discovery & development, is presented.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P.-221005, India
| |
Collapse
|
7
|
Zhilitskaya LV, Shainyan BA, Yarosh NO. Modern Approaches to the Synthesis and Transformations of Practically Valuable Benzothiazole Derivatives. Molecules 2021; 26:2190. [PMID: 33920281 PMCID: PMC8070523 DOI: 10.3390/molecules26082190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
The review is devoted to modern trends in the chemistry of 2-amino and 2-mercapto substituted benzothiazoles covering the literature since 2015. The reviewed heterocycles belong to biologically active and industrially demanded compounds. Newly developed synthesis methods can be divided into conventional multistep processes and one-pot, atom economy procedures, realized using green chemistry principles and simple reagents. The easy functionalization of the 2-NH2 and 2-SH groups and the benzene ring of the benzothiazole moiety allows considering them as highly reactive building blocks for organic and organoelement synthesis, including the synthesis of pharmacologically active heterocycles. The review provides a summary of findings, which may be useful for developing new drugs and materials and new synthetic approaches and patterns of reactivity.
Collapse
Affiliation(s)
| | - Bagrat A. Shainyan
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (L.V.Z.); (N.O.Y.)
| | | |
Collapse
|
8
|
Tiwari VK, Yadav MS, Singh SK, Agrahari AK, Singh AS. N-Acylbenzotriazoles as Proficient Substrates for an Easy Access to Ureas, Acylureas, Carbamates, and Thiocarbamates via Curtius Rearrangement Using Diphenylphosphoryl Azide (DPPA) as Azide Donor. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1399-3823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA diverse range of ureas, N-acylureas, carbamates, and thiocarbamates has been synthesized in good to excellent yields by reacting N-acylbenzotriazoles individually with amines or amides or phenols or thiols in the presence of diphenylphosphoryl azide (DPPA) as a suitable azide donor in anhydrous toluene at 110 °C for 3–4 hours. In this route, DPPA was found to be a good alternative to trimethylsilyl azide and sodium azide for the azide donor in Curtius degradation. The high reaction yields, one-pot and metal-free conditions, straightforward nature, easy handling, use of readily available reagents, and in many cases avoidance of column chromatography are the notable features of the devised protocol.
Collapse
|
9
|
Yan G, Tiwari VK, Yu J, Singh AS, Yu J. Recent Developments on Denitrogenative Functionalization of Benzotriazoles. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractBenzotriazoles are employed as useful synthons in organic synthesis, and due to their unique structural motif, they are able to undergo denitrogenation during the construction of new bonds. Various methods for the functionalization of benzotriazoles as precursors of ortho-amino arenediazoniums have recently been developed that involve transition-metal-catalyzed coupling reactions, mainly via cyclization, borylation, alkenylation, alkylation, carbonylation and the formation of carbon–heteroatom bonds. In this short review, we primarily focus on the recent applications of benzotriazoles in organic chemistry that proceed via a denitrogenative process, and the mechanisms are also discussed.1 Introduction2 Common Synthetic Routes Allowing Easy Access to Benzotriazole Derivatives3 Formation of C–C Bonds3.1 Cyclization Reactions3.2 Arylation, Alkenylation, Alkylation and Carbonylation Reactions4 Carbon–Heteroatom Bond Formation5 Miscellaneous Denitrogenative Functionalization6 Conclusions and Future Perspectives
Collapse
|
10
|
Kozlov MA, Volkova YA, Zavarzin IV. New transformations of phosphorylthioformic acid morpholides. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Li W, Zhang J. Synthesis of Heterocycles through Denitrogenative Cyclization of Triazoles and Benzotriazoles. Chemistry 2020; 26:11931-11945. [DOI: 10.1002/chem.202000674] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 20062 P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 20062 P. R. China
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 20048 P. R. China
| |
Collapse
|
12
|
Singh M, Bose P, Singh AS, Tiwari VK. Synthesis of 1-(2-bromo-1-arylethyl)-1H-benzotriazoles via NBS promoted addition of 1H-benzotriazole to alkene: Relevance in benzotriazole ring cleavage. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Wang Y, Wang Z, Tang Y. Renaissance of Ring-Opening Chemistry of Benzotriazoles: New Wine in an Old Bottle. CHEM REC 2020; 20:693-709. [PMID: 31916676 DOI: 10.1002/tcr.201900088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
1,2,3-Benzotriazoles could undergo ring cleavage to form ortho-amino arenediazonium or α-diazo-imine species via a Dimroth-type equilibrium. Historically, the synthetic potential of this unique reactivity had remained underdeveloped. Recently, some new strategies have been developed to effect the ring-opening chemistry of benzotriazoles in more practical manners. A wide range of conceptually novel and synthetically useful reactions have been developed, which enable the access to diverse valuable heterocycles and ortho-amino arene derivatives. As one of the players in this field, our group has also contributed a series of intriguing transition-metal-catalyzed denitrogenative functionalizations of benzotriazoles. In this account, we aim to provide an overview of the ring-opening chemistry of benzotriazoles, with a focus on relevant works published in the past decade. In order to show a whole picture of the research field, some pioneering works in its developing history will also be discussed briefly.
Collapse
Affiliation(s)
- Yuanhao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Agrahari AK, Singh AK, Singh AS, Singh M, Maji P, Yadav S, Rajkhowa S, Prakash P, Tiwari VK. Click inspired synthesis of p-tert-butyl calix[4]arene tethered benzotriazolyl dendrimers and their evaluation as anti-bacterial and anti-biofilm agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj02591g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CuAAC inspired calix-[4]arene tethered benzotriazolyl dendrimers were developed and investigated for their therapeutic potential, where 7 displayed potent anti-bacterial and anti-biofilm activities against drug-resistant & slime producing organisms.
Collapse
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Ashish K. Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Mala Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Pathik Maji
- Department of Chemistry
- Guru Ghasidas University
- Bilaspur-495009
- India
| | - Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Sanchayita Rajkhowa
- Department of Chemistry
- Jorhat Institute of Science and Technology
- Jorhat-785010
- India
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| |
Collapse
|
15
|
Singh M, Bose P, Singh AS, Tiwari VK. 1‐(Hydroxymethyl)‐1
H
‐benzotriazole: An Efficient Ligand for Copper‐Catalyzed Ullmann‐Type Coupling Reaction Leading to Expeditious Synthesis of Diverse Benzoxazoles and Benzothiazoles. ChemistrySelect 2019. [DOI: 10.1002/slct.201902420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mala Singh
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varansi Uttar Pradesh-221005 INDIA
| | - Priyanka Bose
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varansi Uttar Pradesh-221005 INDIA
| | - Anoop S. Singh
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varansi Uttar Pradesh-221005 INDIA
| | - Vinod K. Tiwari
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varansi Uttar Pradesh-221005 INDIA
| |
Collapse
|