1
|
Khamis F, Hegab HM, Banat F, Arafat HA, Hasan SW. Comprehensive review on pH and temperature-responsive polymeric adsorbents: Mechanisms, equilibrium, kinetics, and thermodynamics of adsorption processes for heavy metals and organic dyes. CHEMOSPHERE 2024; 349:140801. [PMID: 38029934 DOI: 10.1016/j.chemosphere.2023.140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Wastewater treatment technologies have been developed to address the health and environmental risks associated with toxic and cancer-causing dyes and heavy metals found in industrial waste. The most commonly used method to mitigate and treat such effluents is adsorption, which is favored for its high efficiency, low costs, and ease of operation. However, traditional adsorbents have limitations in terms of regeneration and selectivity compared to smart adsorbents. Smart polymeric adsorbents, on the other hand, can undergo physical and chemical changes in response to external factors like temperature and pH, enabling a selective adsorption process. These adsorbents can be easily regenerated and reused with minimal generation of secondary pollutants during desorption. The unique properties acquired by stimuli-responsive adsorbents have encouraged researchers to investigate their potential for the selective and efficient removal of organic dyes and heavy metals. This comprehensive review focuses on two common stimuli, pH and temperature, discussing the fabrication methods and characteristics of smart adsorbents responsive to these factors. It also provides an overview of the mechanisms, isotherms, kinetics, and thermodynamics of the adsorption process for each type of stimuli-responsive adsorbent. Finally, the review concludes with discussions on future perspectives and considerations.
Collapse
Affiliation(s)
- Fatema Khamis
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hassan A Arafat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates; Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Zheng H, Zhang S, Yang C, Yin H, Liu W, Lu K. Simultaneous removal of Ni(II) and Cr(VI) from aqueous solution by froth flotation using PNIPAM-CS intelligent nano-hydrogels as collector. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
4
|
Tomonaga H, Tanigaki Y, Hayashi K, Matsuyama T, Ida J. Adsorption properties of poly(NIPAM-co-AA) immobilized on silica-coated magnetite nanoparticles prepared with different acrylic acid content for various heavy metal ions. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Liu Z, Sun Y, Xu X, Qu J, Qu B. Adsorption of Hg(II) in an Aqueous Solution by Activated Carbon Prepared from Rice Husk Using KOH Activation. ACS OMEGA 2020; 5:29231-29242. [PMID: 33225154 PMCID: PMC7676363 DOI: 10.1021/acsomega.0c03992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 05/23/2023]
Abstract
With the development of industry, the discharge of wastewater containing mercury ions posed a serious threat to human health. Using biomass waste as an adsorbent to treat wastewater containing mercury ions was a better way due to its positive impacts on the environment and resource saving. In this research, activated carbon (AC) was prepared from rice husk (RH) by the KOH chemical activation method. The characterization results of scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) showed that rice husk-activated carbon (RHAC) had good pore structure and oxygen-containing functional groups. The influences of contact time, initial concentration of Hg(II), adsorbent dosage, pH, and ionic strength on mercury ion removal were investigated. The Langmuir model was most suitable for the adsorption isotherm of RHAC, and its maximum adsorption capacity for Hg(II) was 55.87 mg/g. RHAC still had a high removal capacity for Hg(II) after five regeneration cycles. RHAC had excellent removal efficiency for mercury ion wastewater. At the same time, RH could be used as a nonpolluting and outstanding characteristic adsorbent material.
Collapse
Affiliation(s)
- Zhiyuan Liu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
- CAS
Key Laboratory of Renewable Energy, Guangzhou
Institute of Energy Conversion, Guangzhou 510640, P. R.
China
| | - Yong Sun
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
| | - Xinrui Xu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
| | - Jingbo Qu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
| | - Bin Qu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
- CAS
Key Laboratory of Renewable Energy, Guangzhou
Institute of Energy Conversion, Guangzhou 510640, P. R.
China
| |
Collapse
|
6
|
Zhang X, Wang X, Qiu H, Sun X, Han M, Guo Y. Nanoadsorbents preparing from oligoethylene glycol dendron and citric acid: Enhanced adsorption effect for the removal of heavy metal ions. Colloids Surf B Biointerfaces 2020; 189:110876. [PMID: 32088559 DOI: 10.1016/j.colsurfb.2020.110876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Poly(methacrylate oligoethylene glycol dendron-co-citric acid) (PGCA) that is based on citric acid and oligoethylene glycol (OEG) dendrons is utilized as a nanomaterial for the removal of heavy metal ions from aqueous solution. PGCA shows excellent solubility in aqueous solution and realizes satisfactory removal efficacy for Pb2+ ions; the removal rate exceeds 95 %. In addition, PGCA can be utilized in Chinese herbal decoctions; the removal rate of Pb2+ ions in the ligusticum wallichii decoction exceeds 90 %, meanwhile the concentration of the active ingredient, namely, ferulic acid, is maintained. In this nanoadsorbent, citric acid provides the active site for the chelation of heavy metal ions, and OEG dendron serves as a protective layer that reduces the opportunity for carboxyl groups to be occupied by other ingredients. In summary, nanomaterial PGCA is designed and synthesized successfully that can be applied as a nanoadsorbent for the removal of Pb2+ ions from aqueous solution, especially in Chinese herbal decoctions that have acidic compounds as active ingredients.
Collapse
Affiliation(s)
- Xuejie Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Hanhong Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Xueqing Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|