1
|
Fang S, Zeng D, He S, Li Y, Pang Z, Wang Y, Liang L, Weng T, Xie W, Wang D. Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown. SENSORS (BASEL, SWITZERLAND) 2024; 24:2109. [PMID: 38610321 PMCID: PMC11013984 DOI: 10.3390/s24072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
The sensitivity and accuracy of nanopore sensors are severely hindered by the high noise associated with solid-state nanopores. To mitigate this issue, the deposition of organic polymer materials onto silicon nitride (SiNx) membranes has been effective in obtaining low-noise measurements. Nonetheless, the fabrication of nanopores sub-10 nm on thin polymer membranes remains a significant challenge. This work proposes a method for fabricating nanopores on polymethyl methacrylate (PMMA) membrane by the local high electrical field controlled breakdown, exploring the impact of voltage and current on the breakdown of PMMA membranes and discussing the mechanism underlying the breakdown voltage and current during the formation of nanopores. By improving the electric field application method, transient high electric fields that are one-seven times higher than the breakdown electric field can be utilized to fabricate nanopores. A comparative analysis was performed on the current noise levels of nanopores in PMMA-SiNx composite membranes and SiNx nanopores with a 5 nm diameter. The results demonstrated that the fast fabrication of nanopores on PMMA-SiNx membranes exhibited reduced current noise compared to SiNx nanopores. This finding provides evidence supporting the feasibility of utilizing this technology for efficiently fabricating low-noise nanopores on polymer composite membranes.
Collapse
Affiliation(s)
- Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Delin Zeng
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yadong Li
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| | - Zichen Pang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| |
Collapse
|
2
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Kishimoto S, Murayama S, Tsutsui M, Taniguchi M. Crucial Role of Out-of-Pore Resistance on Temporal Response of Ionic Current in Nanopore Sensors. ACS Sens 2020; 5:1597-1603. [PMID: 32141735 DOI: 10.1021/acssensors.0c00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the temporal resolution of ionic current in solid-state nanopore sensors. Resistive pulses observed upon translocation of single-nanoparticles were found to become blunter as we imposed larger external resistance in series to the pore via the integrated microfluidic channels on the membrane. This was found to occur even when the out-of-pore resistance is more than an order of magnitude smaller than that at the nanopore, which can be understood as a predominant contribution of charging/discharging at the water-touching thin dielectrics to retard the response of the ionic current against ion blockage by a fast-moving object through the sensing zone. Most importantly, our results predict a time resolution of better than 12 ns, irrespective of the nanopore size, by optimizing the membrane capacitance and the external resistance that promises high-speed single-molecule sequencing by the ionic current at 106 base/s.
Collapse
Affiliation(s)
- Shohei Kishimoto
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Sanae Murayama
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
4
|
Fu J, Wu L, Qiao Y, Tu J, Lu Z. Microfluidic Systems Applied in Solid-State Nanopore Sensors. MICROMACHINES 2020; 11:mi11030332. [PMID: 32210148 PMCID: PMC7142662 DOI: 10.3390/mi11030332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023]
Abstract
Microfluidic system, as a kind of miniature integrated operating platform, has been applied to solid-state nanopore sensors after many years of experimental study. In the process of introducing microfluidic into solid-state nanopore sensors, many novel device structures are designed due to the abundance of analytes and the diversity of detection methods. Here we review the fundamental setup of nanopore-based microfluidic systems and the developments and advancements that have been taking place in the field. The microfluidic systems with a multichannel strategy to elevate the throughput and efficiency of nanopore sensors are then presented. Multifunctional detection represented by optical-electrical detection, which is realized by microfluidic integration, is also described. A high integration microfluidic system with nanopore is further discussed, which shows the prototype of commercialization.
Collapse
Affiliation(s)
| | | | | | - Jing Tu
- Correspondence: (J.T.); (Z.L.); Tel.: +86-25-8379-2396 (J.T.); +86-25-8379-3779 (Z.L.)
| | - Zuhong Lu
- Correspondence: (J.T.); (Z.L.); Tel.: +86-25-8379-2396 (J.T.); +86-25-8379-3779 (Z.L.)
| |
Collapse
|
5
|
Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. NANOSCALE 2019; 11:19636-19657. [PMID: 31603455 DOI: 10.1039/c9nr05367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since their introduction in 2001, solid-state nanopores have been increasingly exploited for the detection and characterization of biomolecules ranging from single DNA strands to protein complexes. A major factor that enables the application of nanopores to the analysis and characterization of a broad range of macromolecules is the preparation of coatings on the pore wall to either prevent non-specific adhesion of molecules or to facilitate specific interactions of molecules of interest within the pore. Surface coatings can therefore be useful to minimize clogging of nanopores or to increase the residence time of target analytes in the pore. This review article describes various coatings and their utility for changing pore diameters, increasing the stability of nanopores, reducing non-specific interactions, manipulating surface charges, enabling interactions with specific target molecules, and reducing the noise of current recordings through nanopores. We compare the coating methods with respect to the ease of preparing the coating, the stability of the coating and the requirement for specialized equipment to prepare the coating.
Collapse
Affiliation(s)
- Olivia M Eggenberger
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Cuifeng Ying
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mayer
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|