1
|
Labra-Vázquez P, Gressier M, Rioland G, Menu MJ. A review on solution- and vapor-responsive sensors for the detection of phthalates. Anal Chim Acta 2023; 1282:341828. [PMID: 37923401 DOI: 10.1016/j.aca.2023.341828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Phthalic acid esters, largely referred to as phthalates, are today acknowledged as important pollutants used in the manufacture of polyvinyl chloride (PVC)-based plastics, whose use extends to almost every aspect of modern life. The risk of exposure to phthalates is particularly relevant as high concentrations are regularly found in drinking water, food-contact materials and medical devices, motivating an immense body of research devoted to methods for their detection in liquid samples. Conversely, phthalate vapors have only recently been acknowledged as potentially important atmospheric pollutants and as early fire indicators; additionally, deposition of these vapors can pose significant problems to the proper functioning of spacecraft and diverse on-board devices, leading to major space agencies recognizing the need of developing vapor-responsive phthalate sensors. In this manuscript we present a literature survey on solution- and vapor-responsive sensors and analytical assays for the detection of phthalates, providing a detailed analysis of a vast array of analytical data to offer a clear idea on the analytical performance (limits of detection and quantification, linear range) and advantages provided by each class of sensor covered in this review (electrochemical, optical and vapor-responsive) in the context of their potential real-life applications; the manuscript also gives detailed fundamental information on the various physicochemical responses exploited by these sensors and assays that could potentially be harnessed by new researchers entering the field.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| | - Marie Gressier
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 31401, Toulouse, France
| | - Marie-Joëlle Menu
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| |
Collapse
|
2
|
Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA, Ye Q, Kumeria T. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioact Mater 2023; 24:535-550. [PMID: 36714332 PMCID: PMC9860401 DOI: 10.1016/j.bioactmat.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.
Collapse
Affiliation(s)
- Astha Sharma
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ganesh R. Kokil
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Baboucarr Lowe
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Arwa Salam
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Tariq A. Altalhi
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
3
|
Shah MM, Ahmad K, Boota S, Jensen T, La Frano MR, Irudayaraj J. Sensor technologies for the detection and monitoring of endocrine-disrupting chemicals. Front Bioeng Biotechnol 2023; 11:1141523. [PMID: 37051269 PMCID: PMC10083357 DOI: 10.3389/fbioe.2023.1141523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a class of man-made substances with potential to disrupt the standard function of the endocrine system. These EDCs include phthalates, perchlorates, phenols, some heavy metals, furans, dimethoate, aromatic hydrocarbons, some pesticides, and per- and polyfluoroalkyl substances (PFAS). EDCs are widespread in the environment given their frequent use in daily life. Their production, usage, and consumption have increased many-fold in recent years. Their ability to interact and mimic normal endocrine functions makes them a potential threat to human health, aquatics, and wild life. Detection of these toxins has predominantly been done by mass spectroscopy and/or chromatography-based methods and to a lesser extent by advanced sensing approaches such as electrochemical and/or colorimetric methods. Instrument-based analytical techniques are often not amenable for onsite detection due to the lab-based nature of these detecting systems. Alternatively, analytical approaches based on sensor/biosensor techniques are more attractive because they are rapid, portable, equally sensitive, and eco-friendly. Advanced sensing systems have been adopted to detect a range of EDCs in the environment and food production systems. This review will focus on advances and developments in portable sensing techniques for EDCs, encompassing electrochemical, colorimetric, optical, aptamer-based, and microbial sensing approaches. We have also delineated the advantages and limitations of some of these sensing techniques and discussed future developments in sensor technology for the environmental sensing of EDCs.
Collapse
Affiliation(s)
- Muhammad Musaddiq Shah
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Khurshid Ahmad
- College of Food Sciences and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Sonia Boota
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Tor Jensen
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Michael R. La Frano
- Metabolomics Core Facility, Roy J Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
- Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Joseph Irudayaraj,
| |
Collapse
|
4
|
Keshavarzi M, Ghorbani M, Mohammadi P, Pakseresht M, Ziroohi A, Rastegar A. Development of a magnetic sorbent based on synthesis of MOF-on-MOF composite for dispersive solid-phase microextraction of five phthalate esters in bottled water and fruit juice samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Tsang CY, Cheung CY, Beyer S. Assessing the colloidal stability of copper doped ZIF-8 in water and serum. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zhang X, Gao J, Chu Q, Lyu H, Xie Z. Specific recognition and determination of trace phthalic acid esters by molecularly imprinted polymer based on metal organic framework. Anal Chim Acta 2022; 1227:340292. [DOI: 10.1016/j.aca.2022.340292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
|
7
|
Rautenberg M, Gernhard M, Radnik J, Witt J, Roth C, Emmerling F. Mechanochemical Synthesis of Fluorine-Containing Co-Doped Zeolitic Imidazolate Frameworks for Producing Electrocatalysts. Front Chem 2022; 10:840758. [PMID: 35372277 PMCID: PMC8964432 DOI: 10.3389/fchem.2022.840758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR.
Collapse
Affiliation(s)
- Max Rautenberg
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marius Gernhard
- Fakultät für Ingenieurwissenschaften, Lehrstuhl für Werkstoffverfahrenstechnik, Universität Bayreuth, Bayreuth, Germany
| | - Jörg Radnik
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
| | - Julia Witt
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
| | - Christina Roth
- Fakultät für Ingenieurwissenschaften, Lehrstuhl für Werkstoffverfahrenstechnik, Universität Bayreuth, Bayreuth, Germany
| | - Franziska Emmerling
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Franziska Emmerling,
| |
Collapse
|
8
|
Jiang Z, Pan Y, Wang J, Li J, Yang H, Guo Q, Liang S, Chen S, Hu Y, Wang L. Bone-Targeted ICG/Cyt c@ZZF-8 Nanoparticles Based on the Zeolitic Imidazolate Framework-8: A New Synergistic Photodynamic and Protein Therapy for Bone Metastasis. Biomater Sci 2022; 10:2345-2357. [PMID: 35383343 DOI: 10.1039/d2bm00185c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone metastasis (BM) is a solid tumor confined to narrow bone marrow cavities with a relatively poor blood supply and hypoxic environment, making conventional anticancer treatments difficult. In our study,...
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haoze Yang
- Department of Cardiology, Second Xiangya Hospital, Central South University, China
| | - Qi Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, China
| | - Yihe Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Chapartegui-Arias A, Raysyan A, Belenguer AM, Jaeger C, Tchipilov T, Prinz C, Abad C, Beyer S, Schneider RJ, Emmerling F. Tailored Mobility in a Zeolite Imidazolate Framework (ZIF) Antibody Conjugate*. Chemistry 2021; 27:9414-9421. [PMID: 33786901 PMCID: PMC8362128 DOI: 10.1002/chem.202100803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Zeolitic imidazolate framework (ZIF) hybrid fluorescent nanoparticles and ZIF antibody conjugates have been synthesized, characterized, and employed in lateral‐flow immunoassay (LFIA). The bright fluorescence of the conjugates and the possibility to tailor their mobility gives a huge potential for diagnostic assays. An enzyme‐linked immunosorbent assay (ELISA) with horseradish peroxidase (HRP) as label, proved the integrity, stability, and dispersibility of the antibody conjugates, LC‐MS/MS provided evidence that a covalent link was established between these metal‐organic frameworks and lysine residues in IgG antibodies.
Collapse
Affiliation(s)
- Ander Chapartegui-Arias
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,SALSA School of Analytical Sciences Adlershof, Albert-Einstein-Straße 5, 12489, Berlin, Germany
| | - Anna Raysyan
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ana M Belenguer
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Carsten Jaeger
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany
| | - Teodor Tchipilov
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany
| | - Carsten Prinz
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany
| | - Carlos Abad
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany
| | - Sebastian Beyer
- Department of Biomedical Engineering Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong Shatin, Hong Kong
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany.,Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.11, 12489, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,SALSA School of Analytical Sciences Adlershof, Albert-Einstein-Straße 5, 12489, Berlin, Germany
| |
Collapse
|
10
|
Shyngys M, Ren J, Liang X, Miao J, Blocki A, Beyer S. Metal-Organic Framework (MOF)-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:603608. [PMID: 33777907 PMCID: PMC7991400 DOI: 10.3389/fbioe.2021.603608] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis of Metal-organic Frameworks (MOFs) and their evaluation for various applications is one of the largest research areas within materials sciences and chemistry. Here, the use of MOFs in biomaterials and implants is summarized as narrative review addressing primarely the Tissue Engineering and Regenerative Medicine (TERM) community. Focus is given on MOFs as bioactive component to aid tissue engineering and to augment clinically established or future therapies in regenerative medicine. A summary of synthesis methods suitable for TERM laboratories and key properties of MOFs relevant to biomaterials is provided. The use of MOFs is categorized according to their targeted organ (bone, cardio-vascular, skin and nervous tissue) and whether the MOFs are used as intrinsically bioactive material or as drug delivery vehicle. Further distinction between in vitro and in vivo studies provides a clear assessment of literature on the current progress of MOF based biomaterials. Although the present review is narrative in nature, systematic literature analysis has been performed, allowing a concise overview of this emerging research direction till the point of writing. While a number of excellent studies have been published, future studies will need to clearly highlight the safety and added value of MOFs compared to established materials for clinical TERM applications. The scope of the present review is clearly delimited from the general 'biomedical application' of MOFs that focuses mainly on drug delivery or diagnostic applications not involving aspects of tissue healing or better implant integration.
Collapse
Affiliation(s)
- Moldir Shyngys
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jia Ren
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoqi Liang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiechen Miao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- Institute for Tissue Engineering & Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sebastian Beyer
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering & Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
11
|
Buzanich AG, Kulow A, Kabelitz A, Grunewald C, Seidel R, Chapartegui-Arias A, Radtke M, Reinholz U, Emmerling F, Beyer S. Observation of early ZIF-8 crystallization stages with X-ray absorption spectroscopy. SOFT MATTER 2021; 17:331-334. [PMID: 33320159 DOI: 10.1039/d0sm01356k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study investigates early stages of ZIF-8 crystallization up to 5 minutes post mixing of precursor solutions. Dispersive X-ray Absorption Spectroscopy (DXAS) provides a refined understanding of the evolution of the coordination environment during ZIF-8 crystallization. Linear Combination Analysis (LCA) suggests tetrakis(1-methylimidazole)zinc2+ to be a suitable and stable mononuclear structure analogue for some early stage ZIF-8 intermediates. Our results pave the way for more detailed studies on physico-chemical aspects of ZIF-8 crystallization to better control tailoring ZIF-8 materials for specific applications.
Collapse
Affiliation(s)
- Ana Guilherme Buzanich
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Anicó Kulow
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Anke Kabelitz
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Christian Grunewald
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien and Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany and Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Ander Chapartegui-Arias
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany and School of Analytical Sciences Adlershof, Albert-Einstein-Straße 5, D-12489 Berlin, Germany
| | - Martin Radtke
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Uwe Reinholz
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany and Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Sebastian Beyer
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, SAR, China and Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|