1
|
Almohammed S, K. Orhan O, Daly S, O’Regan DD, Rodriguez BJ, Casey E, Rice JH. Electric Field Tunability of Photoluminescence from a Hybrid Peptide-Plasmonic Metal Microfabricated Chip. JACS AU 2021; 1:1987-1995. [PMID: 35574042 PMCID: PMC8611722 DOI: 10.1021/jacsau.1c00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 06/14/2023]
Abstract
Enhancement of fluorescence through the application of plasmonic metal nanostructures has gained substantial research attention due to the widespread use of fluorescence-based measurements and devices. Using a microfabricated plasmonic silver nanoparticle-organic semiconductor platform, we show experimentally the enhancement of fluorescence intensity achieved through electro-optical synergy. Fluorophores located sufficiently near silver nanoparticles are combined with diphenylalanine nanotubes (FFNTs) and subjected to a DC electric field. It is proposed that the enhancement of the fluorescence signal arises from the application of the electric field along the length of the FFNTs, which stimulates the pairing of low-energy electrons in the FFNTs with the silver nanoparticles, enabling charge transport across the metal-semiconductor template that enhances the electromagnetic field of the plasmonic nanoparticles. Many-body perturbation theory calculations indicate that, furthermore, the charging of silver may enhance its plasmonic performance intrinsically at particular wavelengths, through band-structure effects. These studies demonstrate for the first time that field-activated plasmonic hybrid platforms can improve fluorescence-based detection beyond using plasmonic nanoparticles alone. In order to widen the use of this hybrid platform, we have applied it to enhance fluorescence from bovine serum albumin and Pseudomonas fluorescens. Significant enhancement in fluorescence intensity was observed from both. The results obtained can provide a reference to be used in the development of biochemical sensors based on surface-enhanced fluorescence.
Collapse
Affiliation(s)
- Sawsan Almohammed
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Okan K. Orhan
- School
of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| | - Sorcha Daly
- School
of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - David D. O’Regan
- School
of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| | - Brian J. Rodriguez
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Eoin Casey
- School
of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - James H. Rice
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| |
Collapse
|
2
|
Swathi S, Yuvakkumar R, Ravi G, Babu ES, Velauthapillai D, Syed A, Dawoud TMS. Silver-doped cadmium sulfide for electrochemical water oxidation. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01550-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|