1
|
Vuković JP, Tišma M. The role of NMR spectroscopy in lignocellulosic biomass characterisation: A mini review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100219. [PMID: 39263258 PMCID: PMC11388798 DOI: 10.1016/j.fochms.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Lignocellulosic biomass (LB) is promising feedstock for the production of various bio-based products. However, due to its heterogenous character, complex chemical structure and recalcitrance, it is necessary to know its structural composition in order to optimize pretreatment process and further (bio)conversion into bio-based products. Nuclear Magnetic Resonance (NMR) spectroscopy is a fast and reliable method that can provide advanced data on the molecular architecture and composition of lignocellulosic biomass. In this brief overview, characteristic examples of the use of high-resolution NMR spectroscopy for the investigation of various types of LB and their structural units are given and the main drawbacks and future perspectives are outlined.
Collapse
Affiliation(s)
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| |
Collapse
|
2
|
Avelino F, de Andrade Felipe VT, Dias MT, de Novais LMR, D'Oca CDRM, Neto FPM, Soares AK, Magalhães WLE, Mazzetto SE, Lomonaco D. Unraveling the structural aspects of microwave-assisted OrganoCat-based coconut shell lignins: An eco-friendly route for obtaining bio-based antioxidants. Int J Biol Macromol 2024; 274:133349. [PMID: 38925179 DOI: 10.1016/j.ijbiomac.2024.133349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
New routes for biomass valorization have been developing by the scientific community. The aim of this work was developing a novel OrganoCat-based protocol and deeply understand the structure of the obtained lignins. Microwave-assisted OrganoCat-based process was performed using a biphasic system (ethyl acetate and oxalic acid or HCl) at mild conditions. OrganoCat-based lignins (OCLs) were characterized by compositional analysis, FTIR, 1H, 13C, 1H13C HSQC, 31P NMR, TGA and GPC. The solubility of OCLs in different organic solvents and their antioxidant capacity against DPPH were investigated. The spectroscopic analyses showed that OCLs have high residual extractives and the lignin motifs were preserved. OCLs have presented lower thermal stability than MWL, but showed great antioxidant activities and high solubility in a wide range of organic solvents. A novel biorefinery protocol yielded coconut shell lignins with peculiar structural and compositional features and several technological applications through an eco-friendly, sustainable and relatively low-cost biphasic pulping process.
Collapse
Affiliation(s)
- Francisco Avelino
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil.
| | - Vinícius Taveira de Andrade Felipe
- Department of Chemistry and Environment, Federal Institute of Education, Science and Technology of Ceará, 61939-140, Maracanaú, CE, Brazil
| | - Matheus Teixeira Dias
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil
| | | | | | | | - Aline Krolow Soares
- NMR Lab, Department of Chemistry, Federal University of Paraná, 81530-900 Curitiba, PR, Brazil; Embrapa Forestry, 83411-000 Colombo, PR, Brazil
| | | | - Selma E Mazzetto
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | - Diego Lomonaco
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Schrey SD, Martinez Diaz J, Becker L, Mademann JA, Ohrem B, Drobietz D, Chaloupsky P, Jablonowski ND, Wever C, Grande PM, Pestsova E, Klose H. Cell wall composition and biomass saccharification potential of Sida hermaphrodita differ between genetically distant accessions. FRONTIERS IN PLANT SCIENCE 2023; 14:1191249. [PMID: 37457355 PMCID: PMC10340120 DOI: 10.3389/fpls.2023.1191249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Due to its ample production of lignocellulosic biomass, Sida hermaphrodita (Sida), a perennial forb, is considered a valuable raw material for biorefinery processes. The recalcitrant nature of Sida lignocellulosic biomass towards pretreatment and fractionation processes has previously been studied. However, Sida is a non-domesticated species and here we aimed at expanding the potential of such plants in terms of their processability for downstream processes by making use of the natural variety of Sida. To achieve this goal, we established a collection comprising 16 different Sida accessions obtained from North America and Europe. First, we asked whether their cell wall characteristics are reflected in genetic distance or geographical distribution, respectively. A genotyping-by-sequencing (GBS) analysis resulting in a phylogenic tree based on 751 Single Nucleotide Polymorphisms (SNPs), revealed a high genetic diversity and a clear separation between accessions collected in North America and Europe. Further, all three North American accessions were separated from each other. Of the eleven European accessions, five form individual groups and six others belong to a single group. Clonal plants of seven selected accessions of American and European origin were produced and cultivated under greenhouse conditions and the resulting plant material was used for in-depth wet-chemical and spectroscopic cell wall characterization. Two accessions with contrasting cell wall characteristics were then selected and processed using the OrganoCat technology. Results of the different product yields and chemical compositions are reported. Overall, cell wall analyses revealed contrasting clusters regarding these main components between the accessions that can be related to genetic and, partly, geographical distance. Phenotypically, the accessions clustered into two groups that are not entirely overlapping with geographical origin. These results can be the basis for a targeted selection or cultivation of Sida accessions for biorefinery approaches.
Collapse
Affiliation(s)
- Silvia D. Schrey
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jimena Martinez Diaz
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Lukas Becker
- Institute of Developmental and Molecular Biology of Plants, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Jane A. Mademann
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Benedict Ohrem
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dagmar Drobietz
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pavel Chaloupsky
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Nicolai D. Jablonowski
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Wever
- Institute of Developmental and Molecular Biology of Plants, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Philipp M. Grande
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Elena Pestsova
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Developmental and Molecular Biology of Plants, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Klose
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Martinez Diaz J, Grande PM, Klose H. Small-scale OrganoCat processing to screen rapeseed straw for efficient lignocellulose fractionation. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1098411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Agricultural residues such as rapeseed straw can be a valuable source of cellulose, sugars, and aromatic molecules like lignin. Understanding its composition is crucial in order to develop suitable processing technology for the production of biofuel or biochemicals from rapeseed straw. Here, we developed a small-scale OrganoCat system to screen multiple technical conditions and different samples at higher throughput and utilize this system to analyze straw samples from a set of 14 genetically different Brassica lines on their processability. Correlation analysis was performed to investigate the effects of cell wall polymer features on rapeseed biomass disintegration. At comparably mild reaction conditions, the differences in recalcitrance towards OrganoCat fractionation within the set were especially associated with parameters such as pectic polysaccharide content, acetylation, and hemicellulose composition. These findings can subsequently be used to optimize and scale up the pretreatment and fractionation of lignocellulose derived from rapeseed straw.
Collapse
|
5
|
Jablonowski ND, Pauly M, Dama M. Microwave Assisted Pretreatment of Szarvasi (Agropyron elongatum) Biomass to Enhance Enzymatic Saccharification and Direct Glucose Production. FRONTIERS IN PLANT SCIENCE 2022; 12:767254. [PMID: 35058946 PMCID: PMC8765703 DOI: 10.3389/fpls.2021.767254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Biomass from perennial plants can be considered a carbon-neutral renewable resource. The tall wheatgrass hybrid Szarvasi-1 (Agropyron elongatum, hereafter referred to as "Szarvasi") belongs to the perennial Poaceae representing a species, which can grow on marginal soils and produce large amounts of biomass. Several conventional and advanced pretreatment methods have been developed to enhance the saccharification efficiency of plant biomass. Advanced pretreatment methods, such as microwave-assisted pretreatment methods are faster and use less energy compared to conventional pretreatment methods. In this study, we investigated the potential of Szarvasi biomass as a biorefinery feedstock. For this purpose, the lignocellulosic structure of Szarvasi biomass was investigated in detail. In addition, microwave-assisted pretreatments were applied to Szarvasi biomass using different reagents including weak acids and alkali. The produced pulp, hydrolysates, and extracted lignin were quantitatively characterized. In particular, the alkali pretreatment significantly enhanced the saccharification efficiency of the pulp 16-fold compared to untreated biomass of Szarvasi. The acid pretreatment directly converted 25% of the cellulose into glucose without the need of enzymatic digestion. In addition, based on lignin compositional and lignin linkage analysis a lignin chemical model structure present in Szarvasi biomass could be established.
Collapse
Affiliation(s)
- Nicolai D. Jablonowski
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Markus Pauly
- Bioeconomy Science Center (BioSC), Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Murali Dama
- Bioeconomy Science Center (BioSC), Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Malik S, Rana V, Joshi G, Gupta PK, Sharma A. Valorization of Wheat Straw for the Paper Industry: Pre-extraction of Reducing Sugars and Its Effect on Pulping and Papermaking Properties. ACS OMEGA 2020; 5:30704-30715. [PMID: 33283119 PMCID: PMC7711938 DOI: 10.1021/acsomega.0c04883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Cleaner production of sugars and pulp from renewable feedstocks has captured significant scientific attention in the recent past because they can be used for various end applications. In the papermaking industry, a major fraction of hemicellulosic sugars is lost during the pulping. The present study aims at retrieving these hemicellulosic sugars through alkali-, hot-water-, and acid-mediated extraction prior to pulping, which otherwise would have been lost during pulping and washing of pulp. These retrieved sugars can be used as feedstocks for renewable energy and value-added products. Different pretreatments were applied, aided with varying temperature, chemical concentrations, and time. Substantial amounts of total reducing sugars (TRSs) up to 21.98, 13.2, and 15.01% were extracted prior to pulping by acid, alkali, and hot-water pretreatments. Compositions of mono sugars present in the treated liquor were also characterized and confirmed by high-performance liquid chromatography analysis. The morphological changes in the wheat straw after pre-extraction were studied using the field emission gun scanning electron microscopy technique. Pulping of untreated and pretreated wheat straw was carried out at different alkali charges (12, 14, and 16% NaOH). Among all, acid-pretreated straw showed an increase in pulp yield by 10.9% at a 16% alkali charge. Physical strength properties of different pulps were further examined. Alkali- and hot-water-pretreated straw pulp retained 94.26 and 83.16% tensile indices and 92.43 and 87.02% burst indices, respectively. An increase in tear index up to 4.32, 2.01, and 2.30% for alkali-, hot-water-, and acid-pretreated straw pulp was achieved, respectively. Hot-water- and alkali-pretreated wheat straw was observed to be conducive for paper production. The integrated use of wheat straw for extraction of underutilized sugars and pulp production in this way may serve as a key stepping stone for future biorefinery designs in pulp and paper mills.
Collapse
Affiliation(s)
- Shuank Malik
- Cellulose & Paper Discipline, Forest
Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India
| | - Vikas Rana
- Cellulose & Paper Discipline, Forest
Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India
| | - Gyanesh Joshi
- Cellulose & Paper Discipline, Forest
Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India
| | - Praveen Kumar Gupta
- Cellulose & Paper Discipline, Forest
Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India
| | - Ashish Sharma
- Cellulose & Paper Discipline, Forest
Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India
| |
Collapse
|
7
|
Weidener D, Holtz A, Klose H, Jupke A, Leitner W, Grande PM. Lignin Precipitation and Fractionation from OrganoCat Pulping to Obtain Lignin with Different Sizes and Chemical Composition. Molecules 2020; 25:E3330. [PMID: 32708006 PMCID: PMC7436272 DOI: 10.3390/molecules25153330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022] Open
Abstract
Fractionation of lignocellulose into its three main components, lignin, hemicelluloses, and cellulose, is a common approach in modern biorefinery concepts. Whereas the valorization of hemicelluloses and cellulose sugars has been widely discussed in literature, lignin utilization is still challenging. Due to its high heterogeneity and complexity, as well as impurities from pulping, it is a challenging feedstock. However, being the most abundant source of renewable aromatics, it remains a promising resource. This work describes a fractionation procedure that aims at stepwise precipitating beech wood (Fagus sp.) lignin obtained with OrganoCat technology from a 2-methyltetrahydrofuran solution, using n-hexane and n-pentane as antisolvents. By consecutive antisolvent precipitation and filtration, lignin is fractionated and then characterized to elucidate the structure of the different fractions. This way, more defined and purified lignin fractions can be obtained. Narrowing down the complexity of lignin and separately valorizing the fractions might further increase the economic viability of biorefineries.
Collapse
Affiliation(s)
- Dennis Weidener
- Institute of Bio- and Geosciences, Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.W.); (H.K.)
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany;
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Arne Holtz
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany;
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany;
| | - Holger Klose
- Institute of Bio- and Geosciences, Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.W.); (H.K.)
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany;
- Institute of Biology I, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany;
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany;
- Max-Planck-Institute of Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Philipp M. Grande
- Institute of Bio- and Geosciences, Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.W.); (H.K.)
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany;
| |
Collapse
|
8
|
Weidener D, Dama M, Dietrich SK, Ohrem B, Pauly M, Leitner W, Domínguez de María P, Grande PM, Klose H. Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:155. [PMID: 32944071 PMCID: PMC7487623 DOI: 10.1186/s13068-020-01796-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Biomass recalcitrance towards pretreatment and further processing can be related to the compositional and structural features of the biomass. However, the exact role and relative importance to those structural attributes has still to be further evaluated. Herein, ten different types of biomass currently considered to be important raw materials for biorefineries were chosen to be processed by the recently developed, acid-catalyzed OrganoCat pretreatment to produce cellulose-enriched pulp, sugars, and lignin with different amounts and qualities. Using wet chemistry analysis and NMR spectroscopy, the generic factors of lignocellulose recalcitrance towards OrganoCat were determined. RESULTS The different materials were processed applying different conditions (e.g., type of acid catalyst and temperature), and fractions with different qualities were obtained. Raw materials and products were characterized in terms of their compositional and structural features. For the first time, generic correlation coefficients were calculated between the measured chemical and structural features and the different OrganoCat product yields and qualities. Especially lignin-related factors displayed a detrimental role for enzymatic pulp hydrolysis, as well as sugar and lignin yield exhibiting inverse correlation coefficients. Hemicellulose appeared to have less impact, not being as detrimental as lignin factors, but xylan-O-acetylation was inversely correlated with product yield and qualities. CONCLUSION These results illustrate the role of generic features of lignocellulosic recalcitrance towards acidic pretreatments and fractionation, exemplified in the OrganoCat strategy. Discriminating between types of lignocellulosic biomass and highlighting important compositional variables, the improved understanding of how these parameters affect OrganoCat products will ameliorate bioeconomic concepts from agricultural production to chemical products. Herein, a methodological approach is proposed.
Collapse
Affiliation(s)
- Dennis Weidener
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Murali Dama
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Universitätsstraße. 1, 40225 Düsseldorf, Germany
| | - Sabine K. Dietrich
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Benedict Ohrem
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Markus Pauly
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Universitätsstraße. 1, 40225 Düsseldorf, Germany
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an Der Ruhr, Germany
| | | | - Philipp M. Grande
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Holger Klose
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|