1
|
Mohan B, Sasaki Y, Minami T. Paper-based optical sensor arrays for simultaneous detection of multi-targets in aqueous media: A review. Anal Chim Acta 2024; 1313:342741. [PMID: 38862204 DOI: 10.1016/j.aca.2024.342741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
Sensor arrays, which draw inspiration from the mammalian olfactory system, are fundamental concepts in high-throughput analysis based on pattern recognition. Although numerous optical sensor arrays for various targets in aqueous media have demonstrated their diverse applications in a wide range of research fields, practical device platforms for on-site analysis have not been satisfactorily established. The significant limitations of these sensor arrays lie in their solution-based platforms, which require stationary spectrophotometers to record the optical responses in chemical sensing. To address this, this review focuses on paper substrates as device components for solid-state sensor arrays. Paper-based sensor arrays (PSADs) embedded with multiple detection sites having cross-reactivity allow rapid and simultaneous chemical sensing using portable recording apparatuses and powerful data-processing techniques. The applicability of office printing technologies has promoted the realization of PSADs in real-world scenarios, including environmental monitoring, healthcare diagnostics, food safety, and other relevant fields. In this review, we discuss the methodologies of device fabrication and imaging analysis technologies for pattern recognition-driven chemical sensing in aqueous media.
Collapse
Affiliation(s)
- Binduja Mohan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Saleem M, Hanif M, Rafiq M, Ali A, Raza H, Kim SJ, Lu C. Recent Development on Sensing Strategies for Small Molecules Detections. J Fluoresc 2024; 34:1493-1525. [PMID: 37644375 DOI: 10.1007/s10895-023-03387-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV-visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
- Department of Chemistry, Thal University Bhakkar, Punjab, 30000, Bhakkar, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus Layyah-31200, Layyah, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Anser Ali
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Oguz M, Erdemir S, Malkondu S. Engineering a "turn-on" NIR fluorescent sensor-based hydroxyphenyl benzothiazole with a cinnamoyl unit for hydrazine and its environmental and in-vitro applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123193. [PMID: 38142810 DOI: 10.1016/j.envpol.2023.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Hydrazine (N2H4), a chemical compound widely used in various industrial applications, causes significant environmental and biological hazards. Therefore, it is crucial to develop methodologies for the visualization and real time tracking of N2H4. In this regard, we have constructed a novel near-infrared fluorescent probe (HBT-Cy) that can effectively detect N2H4 in various samples. HBT-Cy contains 2-(2'-hydroxyphenyl)benzothiazole (HBT), cinnamoyl (Cy), and pyridinium (Py) moieties. Importantly, HBT-Cy exhibits a rapid, selective, and highly sensitive response to N2H4. This response results in the release of HBT-Py and the generation of considerable colorimetric changes along with a significant NIR (near infrared) fluorescence signal, peaking at 685 nm. Advantages of this system include turn on NIR fluorescence with large Stokes shift, (approximately 171 nm), low limit of detection (LOD = 0.11 μM) and quantum yield (0.211). The probe with low cytotoxic behavior demonstrates strong NIR fluorescence imaging capabilities to visualize endogenous and exogenous N2H4 in live cells. This mitochondria-targetable probe shows effective subcellular localization. These results suggest that HBT-Cy is a valuable probe for tracking and investigating the behavior of N2H4 in biological systems and environmental samples.
Collapse
Affiliation(s)
- Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey.
| | - Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
4
|
Lu G, Yu S, Duan L, Meng S, Ding S, Dong T. New 1,8-naphthalimide-based colorimetric fluorescent probe for specific detection of hydrazine and its multi-functional applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123450. [PMID: 37776836 DOI: 10.1016/j.saa.2023.123450] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Detection of hydrazine is particularly important given its toxicity and extensive application in various industries. In the present paper, a colorimetric fluorescent probe NI-CIN based on 1,8-naphthalimide derivative was rationally designed and simply synthesized for specific detection of hydrazine based on the intramolecular charge transfer (ICT) mechanism. Upon the addition of hydrazine, a significant fluorescence enhancement at 556 nm could be observed within 4 min with a distinct color change from colorless to bright yellow, readily observed by naked eye. Except for HRMS and 1H NMR, density functional theory (DFT) calculations were also performed to support the sensing mechanism. In addition, eco-friendly paper test strips were easily prepared by NI-CIN for selective and real-time detection of hydrazine under aqueous and vapor phases. Furthermore, NI-CIN shows many potential applications for detecting hydrazine in real water and soil samples along with bio-imaging in HepG-2 cells and zebrafish.
Collapse
Affiliation(s)
- Guifen Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Siyuan Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Luyao Duan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Suci Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Sihan Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
5
|
Ma X, Liu L, Wang J, Hao Y, Xu X, Shang X. The role of hydrazine in colorimetric probes based on ferrocene derivative. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xueyan Ma
- Xinxiang Medical University Department of Medical Chemistry CHINA
| | - Lixia Liu
- Xinxiang Medical University Department of Medical Chemistry CHINA
| | - Jia Wang
- Xinxiang Medical University Department of Medical Chemistry CHINA
| | - Yongbing Hao
- Xinxiang Medical University Department of Medical Chemistry CHINA
| | - Xiufang Xu
- Nankai University Department of Chemistry CHINA
| | - Xuefang Shang
- Xinxiang Medical University Department of chemistry Jinsui road 601Not Available 453003 Xinxiang CHINA
| |
Collapse
|
6
|
Ghosh S, Ghosh S, Raza R, Ghosh K. Progress of 3-aminopyridine-based amide, urea, imine and azo derivatives in supramolecular gelation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Li D, Wang Q, Rao N, Zhang Y, Le Y, Liu L, Li L, Huang L, Yan L. Development of Imidazo[1,2-a]pyridine-based probe for detection of hydrazine and its applications in imaging of HepG2 cell. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Wei YF, Wu MX, Wei XR, Sun R, Xu YJ, Ge JF. The fluorescent probe based on methyltetrahydroxanthylium skeleton for the detection of hydrazine. Talanta 2020; 218:121164. [DOI: 10.1016/j.talanta.2020.121164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
|
9
|
Synthesis of azobenzenes with high reactivity towards reductive cleavage: Enhancing the repertoire of hypersensitive azobenzenes and examining their dissociation behavior. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Nandi S, SK M, Biswas S. Rapid switch-on fluorescent detection of nanomolar-level hydrazine in water by a diacetoxy-functionalized MOF: application in paper strips and environmental samples. Dalton Trans 2020; 49:12565-12573. [DOI: 10.1039/d0dt02491k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A diacetoxy-functionalized Zr-based metal–organic framework was employed for the selective, ultra-sensitive, turn-on fluorescent detection of hydrazine in an aqueous medium.
Collapse
Affiliation(s)
- Soutick Nandi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Mostakim SK
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|