1
|
Sreeharsha N, Prasanthi S, Rao GSNK, Gajula LR, Biradar N, Goudanavar P, Naveen NR, Shiroorkar PN, Meravanige G, Telsang M, Asif AH, Sreenivasalu PKP. Formulation optimization of chitosan surface coated solid lipid nanoparticles of griseofulvin: A Box-Behnken design and in vivo pharmacokinetic study. Eur J Pharm Sci 2025; 204:106951. [PMID: 39486655 DOI: 10.1016/j.ejps.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Solid lipid nanoparticles (SLNs) are becoming increasingly favored for their robust biocompatibility and their capacity to enhance drug solubility, particularly for drugs with limited water solubility. This study delves into the effectiveness of the hot melt sonication technique in fabricating SLNs with high drug loading capabilities and sustained release characteristics. Griseofulvin (GF), chosen as a representative drug due to its poor water solubility, was encapsulated into SLNs composed of stearic acid. Optimization of chitosan-coated GF-loaded SLNs (CS-GF-SLN) was conducted using a Box-Behnken design. Utilizing the desirability approach, optimal parameters were determined, including a lipid quantity of 450.593 mg, chitosan content of 268.67 mg, and sonication duration of 2.14 h. These parameters resulted in a zeta potential of -34.8 mV and a particle size (PS) of 56.87 nm. Following optimization, the refined formulation underwent comprehensive assessment across various parameters. Notably, the drug encapsulated within SLNs exhibited sustained release over three days, as illustrated by the in-vitro drug release profile. The optimized formulation demonstrated a bioavailability enhancement by approximately 1.7 to 2.0 times compared to the conventional formulation. Furthermore, administration of drug-loaded SLNs to a macrophage cell line demonstrated no cytotoxicity, affirming their suitability as conventional drug delivery platforms for GF.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, 31982, Kingdom of Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore, 560035, India.
| | - Samathoti Prasanthi
- Department of Pharmaceutics, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyanikethan College of Pharmacy), Sree sainathnagar, A.Rangampet, Tirupati, Andhra Pradesh, 517102, India
| | - Gudhanti Siva Naga Koteswara Rao
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Lakshmi Radhika Gajula
- Department of Pharmaceutics, SJM College of Pharmacy, Chitradurga, Karnataka, 577502, India
| | - Nikita Biradar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India.
| | | | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | | |
Collapse
|
2
|
Fahmy SA, Elghanam R, Rashid G, Youness RA, Sedky NK. Emerging tendencies for the nano-delivery of gambogic acid: a promising approach in oncotherapy. RSC Adv 2024; 14:4666-4691. [PMID: 38318629 PMCID: PMC10840092 DOI: 10.1039/d3ra08042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Despite the advancements in cancer therapies during the past few years, chemo/photo resistance, severe toxic effects, recurrence of metastatic tumors, and non-selective targeting remain incomprehensible. Thus, much effort has been spent exploring natural anticancer compounds endowed with biosafety and high effectiveness in cancer prevention and therapy. Gambogic acid (GA) is a promising natural compound in cancer therapy. It is the major xanthone component of the dry resin extracted from the Garcinia hanburyi Hook. f. tree. GA has significant antiproliferative effects on different types of cancer, and it exerts its anticancer activities through various pathways. Nonetheless, the clinical translation of GA has been hampered, partly due to its water insolubility, low bioavailability, poor pharmacokinetics, rapid plasma clearance, early degradation in blood circulation, and detrimental vascular irritation. Lately, procedures have been invented demonstrating the ability of nanoparticles to overcome the challenges associated with the clinical use of natural compounds both in vitro and in vivo. This review sheds light on the recent emerging trends for the nanodelivery of GA to cancer cells. To the best of our knowledge, no similar recent review described the different nanoformulations designed to improve the anticancer therapeutic activity and targeting ability of GA.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| | - Rawan Elghanam
- Nanotechnology Department, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurugram Haryana 122413 India
| | - Rana A Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) Cairo 11835 Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| |
Collapse
|
3
|
Sisubalan N, Shalini R, Ramya S, Sivamaruthi BS, Chaiyasut C. Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond) 2023; 18:1979-1994. [PMID: 38078433 DOI: 10.2217/nnm-2023-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood-brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ramadoss Shalini
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Sakthivel Ramya
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Ramadan SE, El-Gizawy SA, Osman MA, Arafa MF. Application of Design of Experiment in the Optimization of Apixaban-Loaded Solid Lipid Nanoparticles: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:167. [PMID: 37552329 DOI: 10.1208/s12249-023-02628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Solid lipid nanoparticles (SLnPs) are usually utilized as lipid-based formulations for enhancing oral bioavailability of BCS class IV drugs. Accordingly, the objective of this work was to investigate the effect of formulation and processing variables on the properties of the developed SLnPs for oral delivery of apixaban. Randomized full factorial design (24) was employed for optimization of SLnPs. With two levels for each independent variable, four factors comprising both formulations and processing factors were chosen: the GMS content (A), the Tween 80 content (B), the homogenization time (C), and the content of poloxamer 188 used (D). The modified hot homogenization and sonication method was employed in the formulation of solid lipid nanoparticles loaded with apixaban (APX-SLnPs). The size of APX-SLnPs formulations was measured to lie between 116.7 and 1866 nm, polydispersity index ranged from 0.385 to 1, and zeta potential was discovered to be in the range of - 12.6 to - 38.6 mV. The entrapping efficiency of APX-SLnPs formulations was found to be in the range of 22.8 to 96.7%. The optimized formulation was evaluated in vivo after oral administration to rats. Oral administration of APX-SLnPs resulted in significant prolongation in bleeding time compared with both positive and negative control. This indicates the ability of this system to enhance drug therapeutic effect either by increasing intestinal absorption or trans-lymphatic transport. So, this study highlighted the capability of SLnPs to boost the pharmacological effect of apixaban.
Collapse
Affiliation(s)
- Safaa E Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mona F Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Zhang H, Yang J, Sun R, Han S, Yang Z, Teng L. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization. Acta Pharm Sin B 2023; 13:3277-3299. [PMID: 37655333 PMCID: PMC10466004 DOI: 10.1016/j.apsb.2023.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rongze Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Younis H, Khan HU, Maheen S, Saadullah M, Shah S, Ahmad N, Alshehri S, Majrashi MAA, Alsalhi A, Siddique R, Andleeb M, Shabbir S, Abbas G. Fabrication, Characterization and Biomedical Evaluation of a Statistically Optimized Gelatin Scaffold Enriched with Co-Drugs Loaded into Controlled-Release Silica Nanoparticles. Molecules 2023; 28:5233. [PMID: 37446893 DOI: 10.3390/molecules28135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The current study focused on the fabrication of a well-designed, biocompatible, physically stable, non-irritating and highly porous gelatin scaffold loaded with controlled-release triamcinolone acetonide (TA) and econazole nitrate (EN) co-loaded into mesoporous silica nanoparticles (EN-TA-loaded MSNs) to provide a better long-lasting antifungal therapeutic effect with minimal unfavorable effects. Optimization of the MSNs-loaded scaffold was performed using central composite rotatable design (CCRD), where the effect of gelatin concentration (X1), plasticizer (X2) and freezing time (X3) on the entrapment of EN (Y1) and TA (Y2) and on the release of EN (Y3) and TA (Y4) from the scaffold were studied. The significant compatibility of all formulation ingredients with both drugs was established from XRD, DSC and FT-IR spectra analyses while SEM and zeta studies represented a very precise unvarying distribution of the loaded MSNs in the porous structure of the scaffold. The stability of the optimized scaffold was confirmed from zeta potential analysis (-16.20 mV), and it exhibited higher entrapment efficiency (94%) and the slower (34%) release of both drugs. During in vitro and in vivo antifungal studies against Candida albicans, the MSNs-loaded scaffold was comparatively superior in the eradication of fungal infections as a greater zone of inhibition was observed for the optimized scaffold (16.91 mm) as compared to the pure drugs suspension (14.10 mm). Similarly, the MSNs-loaded scaffold showed a decreased cytotoxicity because the cell survival rate in the scaffold presence was 89% while the cell survival rate was 85% in the case of the pure drugs, and the MSNs-loaded scaffold did not indicate any grade of erythema on the skin in comparison to the pure medicinal agents. Conclusively, the scaffold-loaded nanoparticles containing the combined therapy appear to possess a strong prospective for enhancing patients' adherence and therapy tolerance by yielding improved synergistic antifungal efficacy at a low dose with abridged toxicity and augmented wound-healing impact.
Collapse
Affiliation(s)
- Hina Younis
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Hafeez Ullah Khan
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Safirah Maheen
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Nabeel Ahmad
- School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rida Siddique
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mehwish Andleeb
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Saleha Shabbir
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Eco-friendly and facile production of antibacterial zinc oxide nanoparticles from Grewia flavescens (G. flavescens) leaf extract for biomedical applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
9
|
Adekiya TA, Kumar P, Kondiah PPD, Ubanako P, Choonara YE. In Vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. mansoni Infection in Preclinical Murine Models. Int J Mol Sci 2022; 23:ijms23169485. [PMID: 36012770 PMCID: PMC9408860 DOI: 10.3390/ijms23169485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop and assess the long-term stability of drug-loaded solid lipid nanoparticles (SLNs). The SLNs were designed to extend the release profile, overcome the problems of bioavailability and solubility, investigate toxicity, and improve the antischistosomal efficacy of praziquantel. The aim was pursued using solvent injection co-homogenization techniques to fabricate SLNs in which Compritol ATO 888 and lecithin were used as lipids, and Pluronic F127 (PF127) was used as a stabilizer. The long-term stability effect of the PF127 as a stabilizer on the SLNs was evaluated. Dynamic light scattering (DLS) was used to determine the particle size, stability, and polydispersity. The morphology of the SLNs was examined through the use of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The chemical properties, as well as the mechanical, thermal, and crystal behaviours of SLNs were evaluated using FTIR, ElastoSens Bio2, XRPD, DSC, and TGA, respectively. SLNs with PF127 depicted an encapsulation efficiency of 71.63% and a drug loading capacity of 11.46%. The in vitro drug release study for SLNs with PF127 showed a cumulative release of 48.08% for the PZQ within 24 h, with a similar release profile for SLNs' suspension after 120 days. DLS, ELS, and optical characterization and stability profiling data indicate that the addition of PF127 as the surfactants provided long-term stability for SLNs. In vitro cell viability and in vivo toxicity evaluation signify the safety of SLNs stabilized with PF127. In conclusion, the parasitological data showed that in S. mansoni-infected mice, a single (250 mg/kg) oral dosage of CLPF-SLNs greatly improved PZQ antischistosomal efficacy both two and four weeks post-infection. Thus, the fabricated CLPF-SLNs demonstrated significant efficiency inthe delivery of PZQ, and hence are a promising therapeutic strategy against schistosomiasis.
Collapse
|
10
|
Wairkar S, Patel D, Singh A. Nanostructured lipid carrier based dermal gel of cyclosporine for atopic dermatitis-in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022; 39:2831-2855. [PMID: 35552983 PMCID: PMC9097569 DOI: 10.1007/s11095-022-03286-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Piyush Mehta
- Pharmaceutical Technology Center, Department of Aerosol, Zydus Life Sciences Ltd., Ahmedabad, Gujarat, India
| | | | - Manju A K Rajora
- College of Nursing, All India Institute of Medical Sciences, New Delhi, 100029, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA.
| |
Collapse
|
12
|
Jasrotia R, Dhanjal DS, Bhardwaj S, Sharma P, Chopra C, Singh R, Kumar A, Mubayi A, Kumar D, Kumar R, Goyal A. Nanotechnology based vaccines: Cervical cancer management and perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
|
14
|
Kumar R, Aadil KR, Mondal K, Mishra YK, Oupicky D, Ramakrishna S, Kaushik A. Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Crit Rev Biotechnol 2021; 42:1180-1212. [PMID: 34823433 DOI: 10.1080/07388551.2021.1993126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It affects primarily the central nervous system (CNS) but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. Such patients suffer from debilitating memory loss and altered motor coordination which bring up non-affordable and unavoidable socio-economic burdens. Due to the unavailability of specific therapeutics and diagnostics, the necessity to control or manage NDs raised the demand to investigate and develop efficient alternative approaches. Keeping trends and advancements in view, this report describes both state-of-the-art and challenges in nano-biotechnology-based approaches to manage NDs, toward personalized healthcare management. Sincere efforts are being made to customize nano-theragnostics to control: therapeutic cargo packaging, delivery to the brain, nanomedicine of higher efficacy, deep brain stimulation, implanted stimulation, and managing brain cell functioning. These advancements are useful to design future therapy based on the severity of the patient's neurodegenerative disease. However, we observe a lack of knowledge shared among scientists of a variety of expertise to explore this multi-disciplinary research field for NDs management. Consequently, this review will provide a guideline platform that will be useful in developing novel smart nano-therapies by considering the aspects and advantages of nano-biotechnology to manage NDs in a personalized manner. Nano-biotechnology-based approaches have been proposed as effective and affordable alternatives at the clinical level due to recent advancements in nanotechnology-assisted theragnostics, targeted delivery, higher efficacy, and minimal side effects.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
| | - David Oupicky
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore, Singapore
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
15
|
Okur NÜ, Siafaka PI, Gökçe EH. Challenges in Oral Drug Delivery and Applications of Lipid Nanoparticles as Potent Oral Drug Carriers for Managing Cardiovascular Risk Factors. Curr Pharm Biotechnol 2021; 22:892-905. [PMID: 32753006 DOI: 10.2174/1389201021666200804155535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to the physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability. OBJECTIVE The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid-based nanoparticles seem to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability. METHODS The present review provides a summary of the general theory of lipid-based nanoparticles, their preparation methods, as well as their oral applications. Moreover, oral drug delivery challenges are discussed. RESULTS According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension, etc. Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid-based nanoparticles.
Collapse
Affiliation(s)
- Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evren H Gökçe
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
16
|
Talarico L, Consumi M, Leone G, Tamasi G, Magnani A. Solid Lipid Nanoparticles Produced via a Coacervation Method as Promising Carriers for Controlled Release of Quercetin. Molecules 2021; 26:2694. [PMID: 34064488 PMCID: PMC8125226 DOI: 10.3390/molecules26092694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022] Open
Abstract
Quercetin is a poorly water-soluble flavonoid with many benefits to human health. Besides the natural food resources that may provide Quercetin, the interest in delivery systems that could enhance its bioavailability in the human body has seen growth in recent years. Promising delivery system candidates are represented by Solid Lipid Nanoparticles (SLNs) which are composed of well-tolerated compounds and provide a relatively high encapsulation efficiency and suitable controlled release. In this study, Quercetin-loaded and negatively charged Solid Lipid Nanoparticles were synthesized based on a coacervation method, using stearic acid as a core lipid and Arabic Gum as a stabilizer. Samples were qualitatively characterized by Dynamic light scattering (DLS), Zeta Potential, Surface infrared spectroscopy (FTIR-ATR), and Time of flight secondary ion mass spectrometry (ToF-SIMS). Encapsulation efficiency, drug release, and antioxidant effect against ABTS•+ were evaluated in vitro by UV-VIS spectrophotometry.
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
17
|
Taylor JM, Scale K, Arrowsmith S, Sharp A, Flynn S, Rannard S, McDonald TO. Using pyrene to probe the effects of poloxamer stabilisers on internal lipid microenvironments in solid lipid nanoparticles. NANOSCALE ADVANCES 2020; 2:5572-5577. [PMID: 36133871 PMCID: PMC9417865 DOI: 10.1039/d0na00582g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/10/2020] [Indexed: 06/16/2023]
Abstract
Solid lipid nanoparticles (SLNs) have proved to be effective nanocarriers with many advantages over other non-lipid-based systems. The development of new SLN formulations is often hindered through poor drug loading capacity and time-consuming optimisation of lipid/stabiliser combinations. One challenge in the development of new SLN formulations is understanding the complex interactions between amphiphilic stabilisers and hydrophobic lipids; the nature of these interactions can significantly impact SLN properties, including the internal polarity within the nanoparticle core. Herein, we report the use of pyrene to probe the internal lipid microenvironment inside SLNs. We investigate the effect of using different poloxamer stabilisers on the internal polarity of SLNs formed using the common solid lipid, Compritol 888 ATO. We show that the polarity of the internal lipid environment is modified by the length of the poly(propylene oxide) (PPO) block of the poloxamer stabiliser, with longer PPO blocks producing SLNs with less polar lipid cores. Blending of stabilisers could also be used to tune the polarity of the core lipid environment, which may allow for adjusting the polarity of the lipid to assist the loading of different therapeutics.
Collapse
Affiliation(s)
- Jessica M Taylor
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Kyle Scale
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Sarah Arrowsmith
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool Women's Hospital, University of Liverpool Crown Street Liverpool L8 7SS UK
| | - Andy Sharp
- Department of Women's and Children's Health, Liverpool Women's Hospital, University of Liverpool Crown Street Liverpool L8 7SS UK
| | - Sean Flynn
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
18
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
19
|
Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101617] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Kumar R, Kumar VB, Gedanken A. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. ULTRASONICS SONOCHEMISTRY 2020; 64:105009. [PMID: 32106066 DOI: 10.1016/j.ultsonch.2020.105009] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 05/27/2023]
Abstract
Carbon-based nanomaterials are gaining more and more interest because of their wide range of applications. Carbon dots (CDs) have shown exclusive interest due to unique and novel physicochemical, optical, electrical, and biological properties. Since their discovery, CDs became a promising material for wide range of research applications from energy to biomedical and tissue engineering applications. At same time several new methods have been developed for the synthesis of CDs. Compared to many of these methods, the sonochemical preparation is a green method with advantages such as facile, mild experimental conditions, green energy sources, and feasibility to formulate CDs and doped CDs with controlled physicochemical properties and lower toxicity. In the last five years, the sonochemically synthesized CDs were extensively studied in a wide range of applications. In this review, we discussed the sonochemical assisted synthesis of CDs, doped CDs and their nanocomposites. In addition to the synthetic route, we will discuss the effect of various experimental parameters on the physicochemical properties of CDs; and their applications in different research areas such as bioimaging, drug delivery, catalysis, antibacterial, polymerization, neural tissue engineering, dye absorption, ointments, electronic devices, lithium ion batteries, and supercapacitors. This review concludes with further research directions to be explored for the applications of sonochemical synthesized CDs.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel; Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Vijay Bhooshan Kumar
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Aharon Gedanken
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
21
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
22
|
Higa LH, Schilrreff P, Briski AM, Jerez HE, de Farias MA, Villares Portugal R, Romero EL, Morilla MJ. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces 2020; 191:110961. [PMID: 32208325 DOI: 10.1016/j.colsurfb.2020.110961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Oral administration of antioxidant and anti-inflammatory drugs have the potential to improve the current therapy of inflammatory bowel disease. Success of oral treatments, however, depends on the capacity of drugs to remain structurally stable along the gastrointestinal tract, and on the feasibility of accessing the target cells. Delivering anti-inflammatory and antioxidant drugs to macrophages using targeted nanoparticles, could make treatments more efficient. In this work structural features and in vitro activity of macrophage-targeted nanostructured archaeolipid carriers (NAC) containing the high antioxidant dipolar C50 carotenoid bacterioruberin (BR) plus dexamethasone (Dex): NAC-Dex, are described. Ultra-small (66 nm), -32 mV ζ potential, 1200 μg Dex /ml NAC-Dex, consisted of a compritol and BR core, covered by a shell of sn 2,3 ether linked archaeolipids and Tween 80 (2: 2: 1.2: 3 % w/w) were obtained. NAC-Dex were extensively captured by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide stimulated THP-1 derived macrophages reducing 65 % and 55 % TNF-α and IL-8 release, respectively and 60 % reactive oxygen species production. NAC-Dex also reversed the morphological changes induced by inflammation and increased the transepithelial electrical resistance, partly reconstituting the barrier function. Activity of BR and Dex in NAC-Dex was partially protected after simulated gastrointestinal digestion, improving the chances of BR-Dex joint activity. Results suggest that oral NAC-Dex deserve further exploration as intestinal barrier repairing agent.
Collapse
Affiliation(s)
- Leticia Herminia Higa
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Priscila Schilrreff
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Andrés Martín Briski
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Horacio Emanuel Jerez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina.
| |
Collapse
|
23
|
Drop-by-drop solvent hot antisolvent interaction method for engineering nanocrystallization of sulfamethoxazole to enhanced water solubility and bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Affiliation(s)
- Raj Kumar
- School of Basic Sciences and Advanced Materials Research CentreIndian Institute of Technology Mandi Mandi, Himachal Pradesh India- 175005
| |
Collapse
|
25
|
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30:179-194. [DOI: 10.1080/13543776.2020.1720649] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Balak Das Kurmi
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Mukesh Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur, India
| |
Collapse
|
26
|
Kumar R, Singh A, Sharma K, Dhasmana D, Garg N, Siril PF. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110184. [DOI: 10.1016/j.msec.2019.110184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/17/2019] [Accepted: 09/09/2019] [Indexed: 12/29/2022]
|
27
|
Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Kumar R. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: A literature survey. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|