1
|
O'Brien JH, Kadirvelraj R, Tseng PS, Ross-Kemppinen N, Crich D, Walsh RM, Wood ZA. Cryo-EM Structure of Recombinantly Expressed hUGDH Unveils a Hidden, Alternative Allosteric Inhibitor. Biochemistry 2024. [PMID: 39680853 DOI: 10.1021/acs.biochem.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human UDP-glucose dehydrogenase (hUGDH) catalyzes the oxidation of UDP-glucose into UDP-glucuronic acid, an essential substrate in the Phase II metabolism of drugs. hUGDH is a hexamer that exists in an equilibrium between an active (E) state and an inactive (EΩ) state, with the latter being stabilized by the binding of the allosteric inhibitor UDP-xylose (UDP-Xyl). The allosteric transition between EΩ and E is slow and can be observed as a lag in progress curves. Previous analysis of the lag suggested that unliganded hUGDH exists mainly as EΩ, but two unique crystal forms suggest that the enzyme favors the E state. Resolving this discrepancy is necessary to fully understand the allosteric mechanism of hUGDH. Here, we used cryo-EM to show that recombinant hUGDH expressed in Escherichia coli copurifies with UDP-4-keto-xylose (UX4O), which mimics the UDP-Xyl inhibitor and favors the EΩ state. Cryo-EM studies show that removing UX4O from hUGDH shifts the ensemble to favor the E state. This shift is consistent with progress curve analysis, which shows the absence of a lag for unliganded hUGDH. Inhibition studies show that hUGDH has similar affinities for UDP-Xyl and UX4O. The discovery that UX4O inhibits allosteric hUGDH suggests that UX4O may be the physiologically relevant inhibitor of allosteric UGDHs in bacteria that do not make UDP-Xyl.
Collapse
Affiliation(s)
- John H O'Brien
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Renuka Kadirvelraj
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Po-Sen Tseng
- Department of Pharmaceutical and Biomedical Sciences, Department of Chemistry, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Nolan Ross-Kemppinen
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, Department of Chemistry, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Richard M Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zachary A Wood
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Price MJ, Nguyen AD, Byemerwa JK, Flowers J, Baëta CD, Goodwin CR. UDP-glucose dehydrogenase (UGDH) in clinical oncology and cancer biology. Oncotarget 2023; 14:843-857. [PMID: 37769033 PMCID: PMC10538703 DOI: 10.18632/oncotarget.28514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
UDP-glucose-6-dehydrogenase (UGDH) is a cytosolic, hexameric enzyme that converts UDP-glucose to UDP-glucuronic acid (UDP-GlcUA), a key reaction in hormone and xenobiotic metabolism and in the production of extracellular matrix precursors. In this review, we classify UGDH as a molecular indicator of tumor progression in multiple cancer types, describe its involvement in key canonical cancer signaling pathways, and identify methods to inhibit UGDH, its substrates, and its downstream products. As such, we position UGDH as an enzyme to be exploited as a potential prognostication marker in oncology and a therapeutic target in cancer biology.
Collapse
Affiliation(s)
- Meghan J. Price
- Department of Internal Medicine, John Hopkins Hospital, Baltimore, MD 21287, USA
| | - Annee D. Nguyen
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jovita K. Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Jasmine Flowers
- Department of Neurosurgery, Associated with Duke University Medical Center, Durham, NC 27710, USA
| | - César D. Baëta
- Department of Epidemiology and Clinical Research, Stanford University, Stanford, CA 94305, USA
| | - C. Rory Goodwin
- Department of Neurosurgery, Duke Center for Brain and Spine Metastasis and Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
3
|
Liu Y, Li Y, Li G, Chu H. The molecular mechanism of Y473 phosphorylation of UGDH relieves the inhibition effect of UDP-glucose on HuR. Phys Chem Chem Phys 2023; 25:8714-8724. [PMID: 36896759 DOI: 10.1039/d3cp00227f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Uridine diphosphate glucose (UDP-Glc) is able to accelerate the decay of snail family transcriptional repressor 1 (SNAI1) mRNA by inhibiting Hu antigen R (HuR, an RNA-binding protein), thereby preventing cancer invasiveness and drug resistance. Nevertheless, the phosphorylation of tyrosine 473 (Y473) of UDP-glucose dehydrogenase (UGDH is capable of converting UDP-Glc to uridine diphosphate glucuronic acid (UDP-GlcUA)) weakens the inhibition of UDP-Glc to HuR, thus initiating the epithelial-mesenchymal transformation of tumor cells and promoting tumor cell migration and metastasis. To address the mechanism, we performed molecular dynamics simulations combined with molecular mechanics generalized Born surface area (MM/GBSA) analysis on wild-type and Y473 phosphorylated UGDH and HuR, UDP-Glc, UDP-GlcUA complexes. We demonstrated that Y473 phosphorylation was able to enhance the binding between UGDH and the HuR/UDP-Glc complex. Compared with HuR, UGDH has a stronger binding ability with UDP-Glc; therefore, UDP-Glc was inclined to bind to UGDH and then was catalyzed to UDP-GlcUA by UGDH, which relieved the inhibition of UDP-Glc to HuR. In addition, the binding ability of HuR for UDP-GlcUA was lower than its affinity for UDP-Glc, significantly reducing the inhibition of HuR. Hence, HuR bound to SNAI1 mRNA more easily to increase the stability of mRNA. Our results revealed the micromolecular mechanism of Y473 phosphorylation of UGDH regulating the interaction between UGDH and HuR as well as relieving the inhibition of UDP-Glc on HuR, which contributed to understanding the role of UGDH and HuR in tumor metastasis and developing small molecule drugs targeting the interaction between UGDH and HuR.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
4
|
Samanta R, Sanghvi N, Beckett D, Matysiak S. Emergence of allostery through reorganization of protein residue network architecture. J Chem Phys 2023; 158:085104. [PMID: 36859102 PMCID: PMC9974213 DOI: 10.1063/5.0136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Despite more than a century of study, consensus on the molecular basis of allostery remains elusive. A comparison of allosteric and non-allosteric members of a protein family can shed light on this important regulatory mechanism, and the bacterial biotin protein ligases, which catalyze post-translational biotin addition, provide an ideal system for such comparison. While the Class I bacterial ligases only function as enzymes, the bifunctional Class II ligases use the same structural architecture for an additional transcription repression function. This additional function depends on allosterically activated homodimerization followed by DNA binding. In this work, we used experimental, computational network, and bioinformatics analyses to uncover distinguishing features that enable allostery in the Class II biotin protein ligases. Experimental studies of the Class II Escherichia coli protein indicate that catalytic site residues are critical for both catalysis and allostery. However, allostery also depends on amino acids that are more broadly distributed throughout the protein structure. Energy-based community network analysis of representative Class I and Class II proteins reveals distinct residue community architectures, interactions among the communities, and responses of the network to allosteric effector binding. Bioinformatics mutual information analyses of multiple sequence alignments indicate distinct networks of coevolving residues in the two protein families. The results support the role of divergent local residue community network structures both inside and outside of the conserved enzyme active site combined with distinct inter-community interactions as keys to the emergence of allostery in the Class II biotin protein ligases.
Collapse
Affiliation(s)
- Riya Samanta
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Neel Sanghvi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
5
|
Joo H, Eom H, Cho Y, Rho M, Song WJ. Discovery and Characterization of Polymyxin-Resistance Genes pmrE and pmrF from Sediment and Seawater Microbiome. Microbiol Spectr 2023; 11:e0273622. [PMID: 36602384 PMCID: PMC9927302 DOI: 10.1128/spectrum.02736-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are the last-line antibiotics used to treat Gram-negative pathogens. Thus, the discovery and biochemical characterization of the resistance genes against polymyxins are urgently needed for diagnosis, treatment, and novel antibiotic design. Herein, we report novel polymyxin-resistance genes identified from sediment and seawater microbiome. Despite their low sequence identity against the known pmrE and pmrF, they show in vitro activities in UDP-glucose oxidation and l-Ara4N transfer to undecaprenyl phosphate, respectively, which occur as the part of lipid A modification that leads to polymyxin resistance. The expression of pmrE and pmrF also showed substantially high MICs in the presence of vanadate ions, indicating that they constitute polymyxin resistomes. IMPORTANCE Polymyxins are one of the last-resort antibiotics. Polymyxin resistance is a severe threat to combat multidrug-resistant pathogens. Thus, up-to-date identification and understanding of the related genes are crucial. Herein, we performed structure-guided sequence and activity analysis of five putative polymyxin-resistant metagenomes. Despite relatively low sequence identity to the previously reported polymyxin-resistance genes, at least four out of five discovered genes show reactivity essential for lipid A modification and polymyxin resistance, constituting antibiotic resistomes.
Collapse
Affiliation(s)
- Hwanjin Joo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Youna Cho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zimmer BM, Barycki JJ, Simpson MA. Integration of Sugar Metabolism and Proteoglycan Synthesis by UDP-glucose Dehydrogenase. J Histochem Cytochem 2020; 69:13-23. [PMID: 32749901 DOI: 10.1369/0022155420947500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways.
Collapse
Affiliation(s)
- Brenna M Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Joseph J Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|