1
|
Yuan J, Fan X, Yang J, Zhang X. Rare earth complexes chemiluminescence catalyzed by gold nanoparticles for fast sensing of Tb3+ and Eu3+. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
2
|
Tzani MA, Gioftsidou DK, Kallitsakis MG, Pliatsios NV, Kalogiouri NP, Angaridis PA, Lykakis IN, Terzidis MA. Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules 2021; 26:7664. [PMID: 34946744 PMCID: PMC8705051 DOI: 10.3390/molecules26247664] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Emission of light by matter can occur through a variety of mechanisms. When it results from an electronically excited state of a species produced by a chemical reaction, it is called chemiluminescence (CL). The phenomenon can take place both in natural and artificial chemical systems and it has been utilized in a variety of applications. In this review, we aim to revisit some of the latest CL applications based on direct and indirect production modes. The characteristics of the chemical reactions and the underpinning CL mechanisms are thoroughly discussed in view of studies from the very recent bibliography. Different methodologies aiming at higher CL efficiencies are summarized and presented in detail, including CL type and scaffolds used in each study. The CL role in the development of efficient therapeutic platforms is also discussed in relation to the Reactive Oxygen Species (ROS) and singlet oxygen (1O2) produced, as final products. Moreover, recent research results from our team are included regarding the behavior of commonly used photosensitizers upon chemical activation under CL conditions. The CL prospects in imaging, biomimetic organic and radical chemistry, and therapeutics are critically presented in respect to the persisting challenges and limitations of the existing strategies to date.
Collapse
Affiliation(s)
- Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Dimitra K. Gioftsidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael G. Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Nikolaos V. Pliatsios
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Natasa P. Kalogiouri
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Panagiotis A. Angaridis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| |
Collapse
|
3
|
Yan X, Lin W, Liu H, Pu W, Li J, Wu P, Ding J, Luo G, Zhang J. Wavelength-Tunable, Long Lifetime, and Biocompatible Luminescent Nanoparticles Based on a Vitamin E-Derived Material for Inflammation and Tumor Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100045. [PMID: 34031977 DOI: 10.1002/smll.202100045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Luminescence imaging is one of the most effective noninvasive strategies for detection and stratification of inflammation and oxidative stress that are closely related to the pathogenesis of numerous acute and chronic diseases. Herein biocompatible nanoparticles based on a peroxalate ester derived from vitamin E (defined as OVE) are developed. In combination with different fluorophores, OVE can generate luminescence systems with emission wavelengths varying from blue to the near-infrared light in its native and nanoparticle forms, in the presence of hydrogen peroxide (H2 O2 ). The OVE-based nanoprobes exhibit high luminescence signals with extremely long lifetime, upon triggering by inflammatory conditions with abnormally elevated H2 O2 . Activated neutrophils and macrophages can be illuminated by this type of luminescent nanoprobes, with luminescence intensities positively correlated with inflammatory cell counts. In mouse models of peritonitis, alcoholic liver injury, drug-induced acute liver injury, and acute lung injury, the developed luminescence nanoprobes enable precision imaging of inflammation and disease progression. Moreover, tumors expressing a high level of H2 O2 can be shined. Importantly, the OVE-based nanoplatform shows excellent in vitro and in vivo biocompatibility.
Collapse
Affiliation(s)
- Xinhao Yan
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, China
| | - Wenjie Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huan Liu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junhong Li
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, China
| | - Peng Wu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, China
| | - Jun Ding
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
4
|
Synergistic enhanced of carbon dots and eosin Y on fenton chemiluminescence for the determination of methionine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Zhang Y, Cui G, Qin N, Yu X, Zhang H, Jia X, Li X, Zhang X, Hun X. An assay for Staphylococcus aureus based on a self-catalytic ampicillin–metal (Fe3+)-organic gels–H2O2 chemiluminescence system with near-zero background noise. Chem Commun (Camb) 2020; 56:3421-3424. [DOI: 10.1039/c9cc09166a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-catalytic ampicillin–metal (Fe3+)-organic gels (AMP–MOGs (Fe))–H2O2 CL system, which is not influenced by transition metal ions, was studied.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Gaoxi Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Nana Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xijuan Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Hui Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaohua Li
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Shanxi 037009
- China
| | - Xuzhi Zhang
- Yellow Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- Laboratory for Marine Fisheries Science and Food Production Processes
- Qingdao National Laboratory for Marine Science and Technology
- Qingdao 266071
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| |
Collapse
|