1
|
Mu J, Chen Y, Wu X, Chen Q, Zhang M. Rapid and efficient removal of multiple heavy metals from diverse types of water using magnetic biochars derived from antibiotic fermentation residue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119685. [PMID: 38042070 DOI: 10.1016/j.jenvman.2023.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Pyrolysis is a promising method to treat antibiotic fermentation residue (AFR), a hazardous waste in China, with the benefits of detoxification and resource recycling. However, the application of the AFR-derived biochar has been limited yet, restricting the use of pyrolysis to treat AFR. Herein, for the first time, we reported the use of magnetic biochars derived from vancomycin fermentation residue to rapidly and efficiently co-adsorb multiple heavy metals from diverse types of water with complex matrices. The biochar prepared at 700 °C (labeled as VBC700) exhibited high affinity and selectivity for multiple heavy metals, especially for Ag(I), Hg(II), Pb(II), and Cu(II). The kinetics for Ag(I), Hg(II), and Pb(II) were ultrafast with an equilibrium time of only 5 min, while those for Cu(II) were relatively slower. The maximum adsorption capacity calculated from the Langmuir model for Ag(I), Hg(II), Pb(II), and Cu(II) reached 177.4, 105.9, 387.1, 124.5 mg/g, respectively, which were superior to much previously reported adsorbents. Impressively, Na(I), K(I), Ca(II), Mg(II), and salinity did not affect the capture of these heavy metals, and thus >99% of Ag(I), Pb(II), and Cu(II) were concurrently removed from complex water matrices including seawater, which has rarely been reported before. Furthermore, VBC700 remained high adsorption performance at pH ≥ 3. The adsorption mechanisms included ion exchange, precipitation, and inner-sphere complexation. Overall, the results demonstrate that VBC700 would be an excellent adsorbent to co-capture multiple heavy metals from diverse types of water, highlighting the feasibility of using pyrolysis to achieve a win-win goal for AFR management and heavy metal pollution control.
Collapse
Affiliation(s)
- Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China
| | - Yunchao Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350028, PR China
| | - Xihui Wu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Qinpeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Mingdong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China.
| |
Collapse
|
2
|
Liu M, Almatrafi E, Zhang Y, Xu P, Song B, Zhou C, Zeng G, Zhu Y. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150531. [PMID: 34844313 DOI: 10.1016/j.scitotenv.2021.150531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The contamination of heavy metals (HMs) in the environment has aroused a global concern. The valid remediation of HM contaminated environment is a highly significant issue. As alternative to carbon materials, biochar has been vastly documented for the remediation of HM contaminated environment. However, there are some possible imperfections to meet the actual remediation tasks as the finite properties of raw biochar, and the remediation process is complex and unexpectedly. This review focuses on the progress made on environmental HM remediation by biochar-based materials within the past six years. The property analysis and key modifications of biochar are summarized inspired by their applicability or necessity for HM decontamination, and the environmental remediation as well as the implicated mechanisms are thoroughly elaborated from multiple pivotal sides. The evaluations of practical application associated with biochar amendment are also presented. Finally, some pertinent improvements and research directions are proposed. To our knowledge, this article is the first time to make a systematic summary on the reliability and practicability of biochar-based materials for environmental HM remediation, and critically pointed out the existing issues to facilitate the judicious design of biochar-based materials and understanding the research trends. It is also aims to provide reference for subsequent research and propel the practical applications.
Collapse
Affiliation(s)
- Mengsi Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yi Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Yuan Zhu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
3
|
Snail Shells Adsorbent for Copper Removal from Aqueous Solutions and the Production of Valuable Compounds. J CHEM-NY 2021. [DOI: 10.1155/2021/9537680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This research explored the efficiency of snail shells powder (SSP) for Cu(II) removal from aqueous solutions and the production of valuable compounds from the residual product. To confirm its chemical and mineral components, the material was characterized by different instrumental techniques. The effects of experimental parameters such as the pH of the solution, the effect of SSP dose, particle size, and initial concentration of Cu(II) on the removal process were studied. The removal of Cu(II) was reasonably fast to be completed within a time frame of 90 min. The kinetics following the pseudo-second-order model (R2 = 0.979) were better compared to the pseudo-first-order model (R2 = 0.896). The increase in pH values leads to an increase in the amount of Cu(II) adsorbed. Afterward, the adsorption capacity reaches stability at pH near 7. The maximum Cu(II) removal occurred with a mass of 8 g·L−1 and a particle size of 300 μm. This particle size presents approximately 44.5% of SSP particles, which is the largest proportion of the sample as shown by particle size analysis. The adsorption isotherm was well described by Langmuir and Freundlich equations. The thermodynamic parameters values showed that the Cu(II) adsorption was a spontaneous and exothermic process. Furthermore, with the presence of CaCO3, the precipitation of Cu(II) in the form of posnjakite occurred with a high Cu(II) removal rate close to 99%. The residual SSP was used for the production of valuable compounds through the thermal decomposition process at various temperatures.
Collapse
|
4
|
Shen Y, Ni WX, Li B. Porous Organic Polymer Synthesized by Green Diazo-Coupling Reaction for Adsorptive Removal of Methylene Blue. ACS OMEGA 2021; 6:3202-3208. [PMID: 33553936 PMCID: PMC7860510 DOI: 10.1021/acsomega.0c05634] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
A porous organic polymer (marked as DT-POP), which contains abundant free phenolic hydroxyl groups, is synthesized by the well-known green azo-coupling reaction in water, characterized, and utilized as an effective adsorbent for the elimination of methylene blue (MB) from water solutions. The presence of permanent mesopores, abundant active functional groups, and π-electron enrichment ascribed to phenyl rings make DT-POP an efficient adsorbent for MB due to strong hydrogen bonding, π-π, and electrostatic interactions with the cationic dye MB. DT-POP with high stability and high adsorption capacity can be reused many times and thus shows high applicability in pollutant disposal.
Collapse
Affiliation(s)
- Yang Shen
- Zhejiang Provincial Key Laboratory
of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Wen-Xin Ni
- Zhejiang Provincial Key Laboratory
of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Bing Li
- Zhejiang Provincial Key Laboratory
of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| |
Collapse
|
5
|
Wei Z, Zhang Y, Wang W, Dong S, Jiang T, Wei D. Synthesis of Cost-Effective Pomelo Peel Dimethoxydiphenylsilane-Derived Materials for Pyrene Adsorption: From Surface Properties to Adsorption Mechanisms. ACS OMEGA 2020; 5:9465-9476. [PMID: 32363299 PMCID: PMC7191855 DOI: 10.1021/acsomega.0c00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/09/2020] [Indexed: 05/14/2023]
Abstract
This study investigated the adsorption behaviors of pyrene (PYR) on a pomelo peel adsorbent (PPA), biochar (PPB), and H3PO4-modified (HPP), NaOH-activated (NPP), and dimethoxydiphenylsilane-treated (DPDMS-NPP) pomelo peel materials. SEM, FTIR, and elemental analyses of DPDMS-NPP's surface structure showed that the material was characterized by a well-developed porous structure, a large specific surface area (698.52 m2 g-1), and an abundance of phenyl functional groups. These properties enhance the PYR adsorption performance of DPDMS-NPP. Experimental results indicated that the adsorption capacity of DPDMS-NPP was significantly affected by the amount of material used and the initial concentration of PYR. Kinetic assessments suggested that PYR adsorption on PPA, NPP, and DPDMS-NPP could be accurately described by the pseudo second-order model. The adsorption process was controlled by several mechanisms, including electron donor-acceptor (EDA), electrostatic, and π-π interactions as well as film and intraparticle diffusion. The adsorption isotherm studies showed that PYR adsorption on DPDMS-NPP and PPA was well described by the Langmuir model and the maximum Langmuir adsorption capacity of DPDMS-NPP was 531.9 μg g-1. Overall, the results presented herein suggested that the use of DPDMS-NPP adsorbents constitutes an economic and environmentally friendly approach for the mitigation of PYR contamination risks.
Collapse
Affiliation(s)
- Zhengwen Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Yaoyao Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Wei Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
- . Phone: +86-29-82339052. Fax: +86-29-82335485
| | - Suiming Dong
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Tingbo Jiang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| | - Donghui Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in
Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China
- School of Water and Environment, Chang’an University, Xi’an 710054, P.R. China
| |
Collapse
|
6
|
Li B, Guo JZ, Liu JL, Fang L, Lv JQ, Lv K. Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136897. [PMID: 32018999 DOI: 10.1016/j.scitotenv.2020.136897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Hydrochar produced from agricultural and forestry wastes and its application into the environment are very attractive. Herein, a high-efficiency dithiocarbamate-modified hydrochar (DTHC) was prepared successfully and then applied to eliminate Pb(II) from aqueous solutions. DTHC was characterized by various techniques. It was found that dithiocarbamate and amine groups were successfully grafted onto the surface of hydrochar. The surface area of DTHC was 7.94 m2·g-1, which was four folds less than pristine hydrochar (31.60 m2·g-1), but its adsorption capacity obviously increased. Adsorption experiments showed that the Pb(II) adsorption process onto DTHC well accorded with pseudo-2nd-order kinetics and Langmuir isotherms. The highest Pb(II) uptake by DTHC at 293 K determined from the Langmuir model was 151.51 mg·g-1. Fourier transform infrared spectra and X-ray photoelectron spectroscopy verified that dithiocarbamate, carboxylate, amine and sulfonate groups all facilitated the Pb(II) adsorption. The adsorption mechanism was ascribed to the inner-sphere surface complexation of Pb(II) by these groups and to the ion exchange between Pb(II) and Na(I). Thus, DTHC is an effective adsorbent for Pb(II) removal from water.
Collapse
Affiliation(s)
- Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China.
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Jia-Lin Liu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Ling Fang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Jian-Quan Lv
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Kangle Lv
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei, PR China
| |
Collapse
|