1
|
Akopyan AV, Eseva EA, Tsaplin DE, Latypova SS, Makeeva DA, Anisimov AV, Maximov AL, Karakhanov EA. Deep aerobic desulfurization of fuels over iron–сontaining zeolite based catalysts. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
2
|
Zarifyanova MZ, Islamova GG, Khairullina ZZ, Kharlampidi KE. Thermal Stability of Petroleum Sulfones. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222080146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Liu H, Wang Y, Zhang F, Xu C, Liao X, Jiang Y, Lu S. Catalytic decomposition of dibenzothiophene sulfone over K-based Oxides supported on alumina. NEW J CHEM 2022. [DOI: 10.1039/d1nj05313b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of K-based oxides catalysts supported on aluminium oxide (γ-Al2O3) with different surface area were synthesized by impregnation method and investigated in decomposition of sulfones from oxidized diesel fuel....
Collapse
|
4
|
Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes. Catalysts 2021. [DOI: 10.3390/catal11091131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this paper, the current advantages and disadvantages of using metal-containing nanocatalysts (NCs) for deep chemical oxidative desulfurization (ODS) of liquid fuels are reviewed. A similar analysis is performed for the oxidative biodesulfurization of oil along the 4S-pathway, catalyzed by various aerobic bacterial cells of microorganisms. The preferences of using NCs for the oxidation of organic sulfur-containing compounds in various oil fractions seem obvious. The text discusses the development of new chemical and biocatalytic approaches to ODS, including the use of both heterogeneous NCs and anaerobic microbial biocatalysts that catalyze the reduction of chemically oxidized sulfur-containing compounds in the framework of methanogenesis. The addition of anaerobic biocatalytic stages to the ODS of liquid fuel based on NCs leads to the emergence of hybrid technologies that improve both the environmental characteristics and the economic efficiency of the overall process. The bioconversion of sulfur-containing extracts from fuels with accompanying hydrocarbon residues into biogas containing valuable components for the implementation of C-1 green chemistry processes, such as CH4, CO2, or H2, looks attractive for the implementation of such a hybrid process.
Collapse
|
5
|
Tailor made Functional Zeolite as Sustainable Potential Candidates for Catalytic Cracking of Heavy Hydrocarbons. Catal Letters 2021. [DOI: 10.1007/s10562-021-03657-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Akopyan A, Polikarpova P, Vutolkina A, Cherednichenko K, Stytsenko V, Glotov A. Natural clay nanotube supported Mo and W catalysts for exhaustive oxidative desulfurization of model fuels. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Oxidative desulfurization is a promising way to produce, under mild conditions, clean ecological fuels with ultra-low sulfur content. Herein, we present for the first time heterogeneous catalysts based on natural aluminosilicate nanotubes (halloysite) loaded with transition metal oxides for oxidative sulfur removal using hydrogen peroxide as environmentally safe oxidant. The halloysite nanotubes (HNTs) provide acid sites for C–S bond scission, while the Mo and W oxides act as hydrogen peroxide activators. The structure and acidity of both the clay support and catalysts were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy techniques. These clay-based catalysts revealed the high activity in the oxidation of various classes of sulfur-containing compounds (sulfides, heteroatomic sulfur compounds) under mild reaction conditions. The conversion of various substrates decreases in the following trend: MeSPh > Bn2S > DBT > 4-MeDBT > BT, which deals with substrate electron density and steric hindrance. The influence of the temperature, oxidant to sulfur molar ratio, and reaction time on catalytic behavior was evaluated for Mo- and W-containing systems with various metal content. The complete oxidation of the most intractable dibenzothiophene to the corresponding sulfone was achieved at 80 °C and H2O2:S = 6:1 (molar) for 2 h both for Mo- and W-containing systems. These transition metal oxides HNTs supported catalysts are stable for 10 cycles of dibenzothiophene oxidation, which makes them promising systems for clean fuel production.
Collapse
Affiliation(s)
- Argam Akopyan
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Polina Polikarpova
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Anna Vutolkina
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Valentine Stytsenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| |
Collapse
|
7
|
Haghighi M, Gooneh-Farahani S. Insights to the oxidative desulfurization process of fossil fuels over organic and inorganic heterogeneous catalysts: advantages and issues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39923-39945. [PMID: 32789628 DOI: 10.1007/s11356-020-10310-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Strict environmental laws have been put in place around the world to reduce the amount of sulfur in the fuel to reduce the emissions of harmful gases from fuel combustion and improve air quality. Therefore, extensive researches have been undertaken to devise effective processes or to improve the desulfurization processes. Among the desulfurization processes, the oxidative desulfurization (ODS) process is a promising method to achieve very low and near-zero sulfur content of the fuel. In this process, sulfur compounds are converted to the corresponding sulfone by a catalyst and in the presence of an oxidant. The obtained compounds by polar solvents or adsorbents are removed from the fuel. In recent decades, extensive studies have been carried out on the catalysts used in the oxidative desulfurization process. In this review, a comprehensive survey has been performed on heterogeneous catalysts used in the oxidative desulfurization process. According to the reported researches, the heterogeneous catalysts used can be divided into five groups: ionic liquids, carbon materials, polyoxometalates, transition metal oxides stabilized on porous solid substrates, and metal-organic frameworks. The proposed mechanisms with different catalysts have also been studied in this work.
Collapse
Affiliation(s)
- Maryam Haghighi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, P.O. Box, Tehran, 1993891176, Iran.
| | - Somayeh Gooneh-Farahani
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, P.O. Box, Tehran, 1993891176, Iran
| |
Collapse
|
8
|
Manganese and Cobalt Doped Hierarchical Mesoporous Halloysite-Based Catalysts for Selective Oxidation of p-Xylene to Terephthalic Acid. Catalysts 2019. [DOI: 10.3390/catal10010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bimetallic MnCo catalyst, supported on the mesoporous hierarchical MCM-41/halloysite nanotube composite, was synthesized for the first time and proved its efficacy in the selective oxidation of p-xylene to terephthalic acid under conditions of the AMOCO process. Quantitative yields of terephthalic acid were achieved within 3 h at 200–250 °C, 20 atm. of O2 and at a substrate to the Mn + Co ratio of 4–4.5 times higher than for traditional homogeneous system. The influence of temperature, oxygen, pressure and KBr addition on the catalyst activity was investigated, and the mechanism for the oxidation of p-toluic acid to terephthalic acid, excluding undesirable 4-carboxybenzaldehyde, was proposed.
Collapse
|
9
|
Kulikov LA, Akopyan AV, Polikarpova PD, Zolotukhina AV, Maximov AL, Anisimov AV, Karakhanov EA. Catalysts Based on Porous Polyaromatic Frameworks for Deep Oxidative Desulfurization of Model Fuel in Biphasic Conditions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Leonid A. Kulikov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Argam V. Akopyan
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Polina D. Polikarpova
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anna V. Zolotukhina
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- A.V.Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Anton L. Maximov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- A.V.Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Alexander V. Anisimov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Eduard A. Karakhanov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|