1
|
Zhang S, Li M, Zhang H, Fan F, Zhou C, Lao K, Gao X. Enhanced phosphate removal from aqueous environments using three-dimensional La-doped carboxylic carbon nanotubes/alginate: Performance and mechanisms. Int J Biol Macromol 2024; 280:136117. [PMID: 39343262 DOI: 10.1016/j.ijbiomac.2024.136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The excessive amounts of phosphorus (P) discharged and usage have caused eutrophication and algal blooms, which seriously jeopardize the environment even the human health. In this study, carbon nanotubes (CNTs) served as carriers to develop a lanthanum-based sodium alginate hydrogel (La-CNT-COOH/SA) aimed at efficiently removing phosphate from wastewater. Characterization results confirmed successful deposition of La(OH)3 nanoparticles onto CNT-COOH. The optimal adsorption efficiency of La-CNT-COOH/SA hydrogels occurred at pH 4, with a maximum adsorption capacity of 54.4 mg/g under an initial phosphate concentration of 60 mg/L. Batch experiments demonstrated that La-CNT-COOH/SA performed well across a favorable pH range and exhibited high tolerance to common coexisting ions during phosphate adsorption. Adsorption isotherms indicated a dominance of both physical and chemical mechanisms in phosphate removal by La-CNT-COOH/SA. At elevated phosphate concentrations, the adsorption process followed quasi-second-order kinetics, primarily driven by chemical adsorption. Multi-instrument characterization emphasized that the substantial loading of La(OH)3 on CNT-COOH significantly contributed to adsorption, alongside crosslinked lanthanum ions on sodium alginate and abundant hydroxyl groups. Mechanisms of adsorption by La-CNT-COOH/SA encompassed electrostatic interactions, surface precipitation, and in-sphere complexation (La-O-P). These findings on fabrication, properties, and adsorption mechanisms of the phosphate-removal hydrogel lay a theoretical foundation for applying biomass-based materials in large-scale remediation practices.
Collapse
Affiliation(s)
- Shenghao Zhang
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Mingyang Li
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Hao Zhang
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chunyang Zhou
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Kangwen Lao
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Xiangpeng Gao
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China; School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| |
Collapse
|
2
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
3
|
Manna K, Sutter JP, Natarajan S. Turn-off luminescence sensing, white light emission and magnetic studies of two-dimensional lanthanide MOFs. Dalton Trans 2023. [PMID: 38013491 DOI: 10.1039/d3dt01882b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The lanthanide metal organic framework compounds [Ln(BPTA)1.5(Bpy)]·0.5DMF (Ln = Y, Eu, Gd, Tb, Dy; 1a-5a) and [Ln(BPTA)1.5(Phen)]·0.5DMF (Ln = Y, Eu, Gd, Tb, Dy; 1b-5b) were prepared by employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 2,2'-bipyridine (1a-5a) and 1,10-phenanthroline (1b-5b) as the secondary ligands. Single-crystal structural studies on [Gd(BPTA)1.5(Bpy)]·0.5DMF (3a) and [Dy(BPTA)1.5(Phen)]·0.5DMF (5b) indicated that the compounds have a two-dimensional structure. The Y compound exhibits blue emission, and the other compounds exhibit emission in the expected regions (λex = 350 nm). White light emission was achieved by careful mixing of the red (Eu3+) and green (Tb3+) components in the blue emitting Y compound. Thus, Y0.96Tb0.02Eu0.02 (bpy) and Y0.939Tb0.06Eu0.001 (phen) were found to show white emission when excited using a wavelength of 350 nm. The introduction of N-N-containing ancillary ligands (i.e., bpy and phen) increased the overall quantum yield (QY) of white light emission to 31% and 43%, respectively. The high QY observed for the Tb and Eu compounds was found to be sensitive and selective for the fluorometric detection of azinphos-methyl pesticide and trinitrophenol (TNP) in an aqueous medium at the ppb level. The same behaviour was observed when utilising the compounds as onsite paper strip sensors. Their magnetic properties were also studied, revealing for the Tb and Dy derivatives slow relaxation of the magnetisation at low temperature. The present study highlights the usefulness of rigid π-conjugated molecules such as 2,2'-bipyridine and 1,10-phenanthroline in enhancing the many utilities of rare-earth-containing MOFs towards white light emission, the sensing of harmful and dangerous substances and magnetic properties.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore- 560012, India.
| | - Jean-Pascal Sutter
- Laboratoire de Chime de Coordination du CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse, France.
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore- 560012, India.
| |
Collapse
|
4
|
Martinon TLM, Pierre VC. Luminescent lanthanide probes for cations and anions: Promises, compromises, and caveats. Curr Opin Chem Biol 2023; 76:102374. [PMID: 37517109 PMCID: PMC10529829 DOI: 10.1016/j.cbpa.2023.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
The long luminescence lifetimes and sharp emission bands of luminescent lanthanide complexes have long been recognized as invaluable strengths for sensing and imaging in complex aqueous biological or environmental media. Herein we discuss the recent developments of these probes for sensing metal ions and, increasingly, anions. Underappreciated in the field, buffers and metal hydrolysis influence the response of many responsive lanthanide probes. The inherent complexities arising from these interactions are further discussed.
Collapse
Affiliation(s)
- Thibaut L M Martinon
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis MN 55455, USA
| | - Valérie C Pierre
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis MN 55455, USA.
| |
Collapse
|
5
|
Liu W, Cui HL, Zhou J, Su ZT, Zhang YZ, Chen XL, Yue EL. Synthesis of a Cd-MOF Fluorescence Sensor and Its Detection of Fe 3+, Fluazinam, TNP, and Sulfasalazine Enteric-Coated Tablets in Aqueous Solution. ACS OMEGA 2023; 8:24635-24643. [PMID: 37457463 PMCID: PMC10339333 DOI: 10.1021/acsomega.3c03073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
A Cd-based metal-organic framework (Cd-MOF), named after {[Cd(ttc)(H2O)]·H2O}n (ttc = 1-imidazole-1-yl-2,4,6-benzene-tricarboxylic acid), was synthesized using the solvothermal reaction. The single-crystal structure was determined by single X-ray diffraction analysis, and crystalline characteristics and composition were confirmed by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TG), respectively. Structural analysis showed that the Cd2+ ion is in the seven-coordinated mode, in which ttc2- ion adopts the μ4-η1-η1-η2-η2 coordination mode. It is worth noting that the Cd2+ ion is connected to ttc2- to form a 2D network, and the adjacent 2D network is expanded into a 3D supramolecular network structure through weak hydrogen bonds. The fluorescence sensing experiments indicated that Cd-MOF could not only be used as a fluorescence sensor for Fe3+, fluazinam (FLU), and 2,4,6-trinitrophenolol (TNP) but also for sulfasalazine detection in aqueous solution. To verify the sensitivity of the fluorescent probe, we calculated its detection limit: 5.34 × 10-8 M (Fe3+), 7.8 × 10-8 M (FLU), 1.21 × 10-7 M (TNP), and 2.67 × 10-7 M (SECT). In addition, the quenching mechanism was thoroughly studied.
Collapse
|
6
|
A luminescent probe based on terbium-based metal–organic frameworks for organophosphorus pesticides detection. Mikrochim Acta 2022; 189:438. [DOI: 10.1007/s00604-022-05508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
7
|
Liu X, Liu Y, Feng S, Lu L. Two luminescent Zn(II) coordination complexes as fluorescence-responsive sensors for efficient detection of Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Selective Aminothiazole‐Derivative Probe for Detection of Phosphate in Freshwater. ChemistrySelect 2022. [DOI: 10.1002/slct.202202740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Liu W, Wang F, Chen X, Zhi W, Wang X, Xu B, Yang B. Design of "turn-off" luminescent Ln-MOFs for sensitive detection of cyanide anions. Dalton Trans 2022; 51:15741-15749. [PMID: 36178037 DOI: 10.1039/d2dt01844f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 2D lanthanide metal-organic frameworks (Ln-MOFs), namely {[Eu2(DBTA)3(DMF)2]·DMF}n (1) and {[Tb2(DBTA)3(DMF)2]·DMF}n (2) (H2DBTA = 2,5-dibromoterephthalic acid), have been successfully synthesized by the solvothermal method. Single-crystal X-ray diffraction results proved that the complexes possess the same topological structure of a (42·6)2(42·84)(47·63)2-connected net. The recognition of CN- from interfering anions with a low detection limit by "turn-off" luminescence makes them promising candidates for the highly selective and sensitive detection of the cyanide ion. The Ln-MOFs 1 and 2 exhibit excellent chemical sensing properties for CN- with efficiency, selectivity, and excellent performance in various mixed anions. The evaluation parameters, including the quenching constant and detection limit, have been investigated to obtain the detection performance for CN-.
Collapse
Affiliation(s)
- Weisai Liu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fei Wang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoyi Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenke Zhi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xuquan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| |
Collapse
|
10
|
Kaur H, Sinha S, Krishnan V, Koner RR. Coordination networks for the recognition of oxo-anions. Dalton Trans 2021; 50:8273-8291. [PMID: 34048515 DOI: 10.1039/d1dt00411e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crystalline coordination networks with an infinite extended framework, also known as coordination polymers (CPs) or metal-organic frameworks (MOFs), have attracted significant attention owing to their tremendous performance in an extensive range of applications. The unique structural features and high stability of coordination networks are responsible for their utilization and potential in diverse fields especially in the area of sensing using luminescent CPs/MOFs. The recognition of toxic oxo-anions present in water is a crucial and first step towards environmental remediation, mainly in the case of water pollution. Accordingly, the utilization of luminescent coordination networks has received significant interest, particularly for the recognition of various toxic oxo-anions, which are considered a threat to aquatic life and the environment. In this frontier article, we summarize recent reports on luminescent CPs/MOFs, their utilization for the sensing of oxo-anions and the chemistry of the interaction of oxo-anions with CPs/MOFs, which is responsible for tuning their optical signals.
Collapse
Affiliation(s)
- Harpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175005, HP, India
| | | | | | | |
Collapse
|
11
|
Multidimensional Ln-Aminophthalate Photoluminescent Coordination Polymers. MATERIALS 2021; 14:ma14071786. [PMID: 33916632 PMCID: PMC8038553 DOI: 10.3390/ma14071786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.
Collapse
|
12
|
Jin J, Xue J, Liu Y, Yang G, Wang YY. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans 2021; 50:1950-1972. [PMID: 33527951 DOI: 10.1039/d0dt03930f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discharge of excessive metal ions and anions into water bodies leads to the serious pollution of water and environment, which in turn has a certain impact on industry, agriculture, and human life. Because of the unique advantages of luminescent metal-organic frameworks (LMOFs), they have been successfully explored as various fluorescent probes to quickly and effectively detect these pollutants. This perspective not only introduces the design strategy and classification of LMOFs, especially the construction methods of water-stable LMOFs, but also reports the latest progresses in some LMOFs between 2016 and 2020 as well as expounds the mechanisms of LMOFs for detecting anions and cations. Moreover, the luminescence properties of LMOFs are related to the selection of metal ions, the structure of organic ligands, the pore size, and the interaction of guest molecules. Finally, the further development of LMOFs is summarized and prospected in this field.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Juanjuan Xue
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yanchen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| |
Collapse
|
13
|
Chen M, Wu KY, Pan WL, Huang NH, Li RT, Chen JX. Selective and recyclable tandem sensing of PO 43- and Al 3+ by a water-stable terbium-based metal-organic framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119084. [PMID: 33128945 DOI: 10.1016/j.saa.2020.119084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Herein, a luminescent water-stable terbium-based metal-organic framework (MOF) {[Tb(Cmdcp)(H2O)3]2(NO3)2·5H2O}n (1, H3CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide) has been synthesized and used for the recyclable sensing of PO43- and Al3+ in tandem. MOF 1 acts as a fluorescent sensor for PO43- by the luminescence "turn-off" mechanism with high selectivity over other anions, such as F-, Cl-, Br-, I-, NO3-, H2PO4-, HSO4-, HCO3-, HSO3-, SO42-, CO32- and HPO42-. The formed PO43-@1 complex further acts as the Al3+ sensor with the luminescence "turn-on" mechanism, also with high selectivity over diverse inorganic cations of Fe2+, Mn2+, Co2+, Ni2+, Hg2+, Na+, K+, Li+, Ag+, Mg2+, Ca2+, Cd2+, Pb2+, Cu2+, and Zn2+. The detection process for both PO43- and Al3+ can be directly observed with naked eyes under the UV light at 365 nm. The detection limits for PO43- and Al3+ are 1.1 μM and 6.6 μM, respectively. Such a sensing cycle is further transferable to urine and serum samples with a satisfactory near-quantitative recovery, highlighting its good potential in biologically relevant applications.
Collapse
Affiliation(s)
- Ming Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ke-Yang Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wei-Lun Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Nai-Hai Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
14
|
Yang DD, Lu LP, Zhu ML. A design for detecting phosphate ions in aqueous solution by luminescent Tb-coordination polymer. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kuznetsova A, Matveevskaya V, Pavlov D, Yakunenkov A, Potapov A. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2699. [PMID: 32545737 PMCID: PMC7345804 DOI: 10.3390/ma13122699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Coordination polymers are constructed from metal ions and bridging ligands, linking them into solid-state structures extending in one (1D), two (2D) or three dimensions (3D). Two- and three-dimensional coordination polymers with potential voids are often referred to as metal-organic frameworks (MOFs) or porous coordination polymers. Luminescence is an important property of coordination polymers, often playing a key role in their applications. Photophysical properties of the coordination polymers can be associated with intraligand, metal-centered, guest-centered, metal-to-ligand and ligand-to-metal electron transitions. In recent years, a rapid growth of publications devoted to luminescent or fluorescent coordination polymers can be observed. In this review the use of fluorescent ligands, namely, 4,4'-stilbenedicarboxylic acid, 1,3,4-oxadiazole, thiazole, 2,1,3-benzothiadiazole, terpyridine and carbazole derivatives, naphthalene diimides, 4,4',4''-nitrilotribenzoic acid, ruthenium(II) and iridium(III) complexes, boron-dipyrromethene (BODIPY) derivatives, porphyrins, for the construction of coordination polymers are surveyed. Applications of such coordination polymers based on their photophysical properties will be discussed. The review covers the literature published before April 2020.
Collapse
Affiliation(s)
- Anastasia Kuznetsova
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
| | - Vladislava Matveevskaya
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
| | - Dmitry Pavlov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei Yakunenkov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Khan MD, Chottitisupawong T, Vu HHT, Ahn JW, Kim GM. Removal of Phosphorus from an Aqueous Solution by Nanocalcium Hydroxide Derived from Waste Bivalve Seashells: Mechanism and Kinetics. ACS OMEGA 2020; 5:12290-12301. [PMID: 32548412 PMCID: PMC7271366 DOI: 10.1021/acsomega.0c00993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Excessive supply of phosphorus, a vital macronutrient for all organisms, can cause unwanted environmental consequences such as eutrophication. An increase in agricultural and industrial activities has created a considerable imbalance in the phosphorus cycle with continuing adverse effects on sustainability and ecosystem health, thereby stipulating/postulating the significance of phosphorus removal. A unique and sustainable concept for the removal of phosphorus through the utilization of waste bivalve seashells was proposed in the present study. Flat-surfaced and hexagonally shaped nanocalcium hydroxide particles (∼96% purity) with size ranging from 100 to 400 nm have been synthesized, and phosphorus from its aqueous solution is treated via precipitation. An optimization study has been conducted using the Box-Behnken design of response surface methodology, which highlights that with a calcium/phosphorus mass ratio, pH, and temperature of 2.16, 10.20, and 25.48 °C, a phosphorus removal efficiency of 99.33% can be achieved in a residence time of 10 min. Also, under the same conditions, diluted human urine was analyzed and phosphorus removal efficiency of ∼95% was observed. Through experimental results, semiquantitative phase analysis, and transmission electron microscopy, it has been found that the reaction was diffusion-controlled, which was further confirmed through shrinking core diffusion modeling. The present study manifests the promising potential of waste seashell-derived nanocalcium hydroxide for phosphorus treatment and its precipitation in the form of value-added hydroxyapatite.
Collapse
Affiliation(s)
- Mohd D. Khan
- Resources
Recycling Department, University of Science
and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Thannaree Chottitisupawong
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, South Korea
| | - Hong H. T. Vu
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Ji W. Ahn
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Gwang M. Kim
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| |
Collapse
|
17
|
Li Z, Zhan Z, Hu M. A luminescent terbium coordination polymer as a multifunctional water-stable sensor for detection of Pb 2+ ions, PO 43− ions, Cr 2O 72− ions, and some amino acids. CrystEngComm 2020. [DOI: 10.1039/d0ce01101k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is the first Ln-CP fluorescence probe for synchronous determination of Tyr and Trp in the presence of other amino acids.
Collapse
Affiliation(s)
- Zhang Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Zhiying Zhan
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| |
Collapse
|