1
|
Epimeric Mixture Analysis and Absolute Configuration Determination Using an Integrated Spectroscopic and Computational Approach-A Case Study of Two Epimers of 6-Hydroxyhippeastidine. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010214. [PMID: 36615407 PMCID: PMC9822407 DOI: 10.3390/molecules28010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Structural elucidation has always been challenging, and misassignment remains a stringent issue in the field of natural products. The growing interest in discovering unknown, complex natural structures accompanies the increasing awareness concerning misassignments in the community. The combination of various spectroscopic methods with molecular modeling has gained popularity in recent years. In this work, we demonstrated, for the first time, its power to fully elucidate the 2-dimensional and 3-dimensional structures of two epimers in an epimeric mixture of 6-hydroxyhippeastidine. DFT calculation of chemical shifts was first performed to assist the assignment of planar structures. Furthermore, relative and absolute configurations were established by three different ways of computer-assisted structure elucidation (CASE) coupled with ORD/ECD/VCD spectroscopies. In addition, the significant added value of OR/ORD computations to relative and absolute configuration determination was also revealed. Remarkably, the differentiation of two enantiomeric scaffolds (crinine and haemanthamine) was accomplished via OR/ORD calculations with cross-validation by ECD and VCD.
Collapse
|
2
|
Galimberti DR. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. J Chem Theory Comput 2022; 18:6217-6230. [PMID: 36112978 PMCID: PMC9558311 DOI: 10.1021/acs.jctc.2c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/29/2022]
Abstract
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems. The comparison with the experimental spectra is striking especially in the fingerprint region, as demonstrated by the three benchmark systems discussed: (1S)-Fenchone in the gas phase, (S)-(-)-Propylene oxide in the liquid phase, and (R)-(-)-2-butanol in the liquid phase. The time evolution of APTs and AATs can be adequately described by a linear combination of the tensors of a small set of appropriate reference structures, strongly reducing the computational cost without compromising accuracy. Additionally, AWV allows the partition of the spectral signal in its molecular components without any expensive postprocessing and any localization of the charge density or the wave function.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Bogaerts J, Aerts R, Vermeyen T, Johannessen C, Herrebout W, Batista JM. Tackling Stereochemistry in Drug Molecules with Vibrational Optical Activity. Pharmaceuticals (Basel) 2021; 14:877. [PMID: 34577577 PMCID: PMC8468215 DOI: 10.3390/ph14090877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
Chirality plays a crucial role in drug discovery and development. As a result, a significant number of commercially available drugs are structurally dissymmetric and enantiomerically pure. The determination of the exact 3D structure of drug candidates is, consequently, of paramount importance for the pharmaceutical industry in different stages of the discovery pipeline. Traditionally the assignment of the absolute configuration of druggable molecules has been carried out by means of X-ray crystallography. Nevertheless, not all molecules are suitable for single-crystal growing. Additionally, valuable information about the conformational dynamics of drug candidates is lost in the solid state. As an alternative, vibrational optical activity (VOA) methods have emerged as powerful tools to assess the stereochemistry of drug molecules directly in solution. These methods include vibrational circular dichroism (VCD) and Raman optical activity (ROA). Despite their potential, VCD and ROA are still unheard of to many organic and medicinal chemists. Therefore, the present review aims at highlighting the recent use of VOA methods for the assignment of the absolute configuration of chiral small-molecule drugs, as well as for the structural analysis of biologics of pharmaceutical interest. A brief introduction on VCD and ROA theory and the best experimental practices for using these methods will be provided along with selected representative examples over the last five years. As VCD and ROA are commonly used in combination with quantum calculations, some guidelines will also be presented for the reliable simulation of chiroptical spectra. Special attention will be paid to the complementarity of VCD and ROA to unambiguously assess the stereochemical properties of pharmaceuticals.
Collapse
Affiliation(s)
- Jonathan Bogaerts
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Tom Vermeyen
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
- Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Christian Johannessen
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Joao M. Batista
- Institute of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos 12231-280, SP, Brazil
| |
Collapse
|
4
|
Aerts R, Vanhove J, Herrebout W, Johannessen C. Paving the way to conformationally unravel complex glycopeptide antibiotics by means of Raman optical activity. Chem Sci 2021; 12:5952-5964. [PMID: 35342545 PMCID: PMC8867523 DOI: 10.1039/d1sc01446c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
It is crucial for fundamental physical chemistry techniques to find their application in tackling real-world challenges. Hitherto, Raman optical activity (ROA) spectroscopy is one of the examples where a promising future within the pharmaceutical sector is foreseen, but has not yet been established. Namely, the technique is believed to be able to contribute in investigating the conformational behaviour of drug candidates. We, herein, strive towards the alignment of the ROA analysis outcome and the pharmaceutical expectations by proposing a fresh strategy that ensures a more complete, reliable, and transferable ROA study. The strategy consists of the treatment of the conformational space by means of a principal component analysis (PCA) and a clustering algorithm, succeeded by a thorough ROA spectral analysis and a novel way of estimating the contributions of the different chemical fragments to the total ROA spectral intensities. Here, vancomycin, an antibiotic glycopeptide, has been treated; it is the first antibiotic glycopeptide studied by means of ROA and is a challenging compound in ROA terms. By applying our approach we discover that ROA is capable of independently identifying the correct conformation of vancomycin in aqueous solution. In addition, we have a clear idea of what ROA can and cannot tell us regarding glycopeptides. Finally, the glycopeptide class turns out to be a spectroscopically curious case, as its spectral responses are unlike the typical ROA spectral responses of peptides and carbohydrates. This preludes future ROA studies of this intriguing molecular class.
Collapse
Affiliation(s)
- Roy Aerts
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Jente Vanhove
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Christian Johannessen
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| |
Collapse
|
5
|
del Río RE, Joseph-Nathan P. Vibrational Circular Dichroism Absolute Configuration of Natural Products From 2015 to 2019. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21996166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although demonstrated in 1975, vibrational circular dichroism (VCD) finally started to popularize during this century as a reliable tool to determine the absolute configuration (AC) of organic molecules. This research field continues to be a very dynamic one, in particular for the study of natural products which are a unlimited source of chiral molecules. It therefore turns of interest to summarize the accomplishments published in recent years and to comment on some eventual difficulties that emerged in rare cases to complete the AC determination task. Therefore the aim of this review is to update VCD results for the AC assignment of natural products published from 2015 to 2019, a period in which VCD was reported in some 126 publications involving almost 300 molecules. They are organized according the type of studied metabolite allowing an easily search. The molecules correspond to 28 monoterpenes concerning 17 papers, to 42 sesquiterpenes in 14 papers, to 51 diterpenes in 19 publications, to 5 other terpenoids in three papers, to 48 aromatic molecules in 15 reports, to 20 polyketides in 10 publications, to 27 miscellaneous formulas also in 10 papers, and to 76 nitrogen containing compounds, which include alkaloids and their synthetic analogs, in 38 articles. The landscape of reviewed molecules is quite wide as it goes from simple monoterpenes, like borneol or camphor, to very relevant biological molecules like the alkaloid cocaine or tadalafil samples to distinguish genuine and counterfeit Cialis®. In addition, 5 natural products and a simple derivative published outside the reviewed period, were used to illustrate some aspects of density functional theory calculations.
Collapse
Affiliation(s)
- Rosa E. del Río
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Švecová M, Palounek D, Volochanskyi O, Prokopec V. Vibrational spectroscopic study of selected alkaloids with therapeutic effects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117969. [PMID: 31884398 DOI: 10.1016/j.saa.2019.117969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, scientists from various fields of chemistry, biochemistry or biology are interested in trace detection of different natural or synthetic substances such as alkaloids which can either positively or negatively affect human physical and mental health. Linked with that, growing interest in broad applications of advanced vibrational spectroscopic techniques encourage higher demands in this rapidly developing field. This study is focused on a detailed description of infrared and Raman spectra of two natural alkaloids (namely galantamine and buprenorphine) and study of their optical response in the vicinity of gold and silver nanostructured surface. The interpretation of individual bands was supported by DFT calculations. Both alkaloids were also studied using surface-enhanced Raman scattering technique aiming at a comparison with non-enhanced vibrational data construction of concentration-dependent series and determination of their limit of detection. From SERS spectral series the regression models were developed to predict alkaloids concentration in the range of 10-3-10-7 mol/l, in the case of buprenorphine adsorbed on Ag substrate we were able to broaden this range down to 10-9 mol/l.
Collapse
Affiliation(s)
- Marie Švecová
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic; Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| | - David Palounek
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Oleksandr Volochanskyi
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic; Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Vadym Prokopec
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| |
Collapse
|
7
|
Bogaerts J, Desmet F, Aerts R, Bultinck P, Herrebout W, Johannessen C. A combined Raman optical activity and vibrational circular dichroism study on artemisinin-type products. Phys Chem Chem Phys 2020; 22:18014-18024. [DOI: 10.1039/d0cp03257c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Artemisinin and two of its derivatives, dihydroartemisinin and artesunate, front line drugs against malaria, were studied using Raman optical activity (ROA), vibrational circular dichroism (VCD) experiments and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
| | - Filip Desmet
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Roy Aerts
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | | | - Wouter Herrebout
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | | |
Collapse
|