1
|
Guo L, Chen A, Li C, Wang Y, Yang D, He N, Liu M. Solution chemistry mechanisms of exogenous silicon influencing the speciation and bioavailability of cadmium in alkaline paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129526. [PMID: 35999739 DOI: 10.1016/j.jhazmat.2022.129526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The mechanism of silicon (Si) influencing cadmium (Cd) speciation and bioavailability in alkaline paddy soil solution remains unclear. Therefore, this study sought to elucidate the effect of Si on Cd by combining chemical analysis and rice pot experiments. In this work, the effects of Na2SiO3 alkalinity and the differences in Na+ were eliminated in all treatments, and the Cd speciation in soil solutions was determined in-situ using a Field-Donnan membrane technology (DMT) cell. Additionally, rice yields and the Cd content in various parts of the rice plant were studied. The results showed that Si application significantly increased rice biomass by 32% (P < 0.05) while significantly reduced the Cd content in brown rice by 52% (P < 0.01) and the free Cd2+ concentration in the soil solution. Further analysis of the interaction of Si and Cd using Fourier transform-infrared spectroscopy (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS) indicated that a Si-Cd complex was formed by Cd and Si-O groups. In summary, Si changed the chemical speciation of Cd in the alkaline soil solution and formed a water-soluble Si-Cd complex that the rice could not absorb, consequently reducing Cd bioavailability.
Collapse
Affiliation(s)
- Lei Guo
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Aiting Chen
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Cai Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Yaojing Wang
- College of Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Dan Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Na He
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
2
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Influence of a series of pyridine ligands on the structure and photophysical properties of Cd( ii) complexes. CrystEngComm 2022. [DOI: 10.1039/d1ce01584b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Five Cd(ii) complexes based on α-acetamidocinnamic acid (HACA) and a set of N,N^N and N^N^N-pyridine (dPy) yield complexes with diverse nuclearities and enhanced quantum yields, benefiting from the chelation enhanced effect (CHEF) of dPy.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Papanikolaou GT, Kourtellaris A, Pantelis KN, Bekiari V, Tasiopoulos AJ, Stamatatos TC. Zinc(II) vs cadmium(II) in organic chelate-free chemistry: Synthesis and characterization of 1-D [Zn2(N3)4(MeCN)3]n and 2-D [Cd3(N3)6(MeCN)2]n coordination polymers. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Stereochemical Geometries and Photoluminescence in Pseudo-Halido-Zinc(II) Complexes. Structural Comparison between the Corresponding Cadmium(II) Analogs. INORGANICS 2021. [DOI: 10.3390/inorganics9070053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Six pseudohalide zinc(II) containing a variety of N-donor auxiliary amines were structurally characterized. These include two mononuclear trigonal bipyramidal [Zn(NTB)(N3)]ClO4·½H2O (3) and [Zn(TPA)(NCS)]ClO4 (4), two distorted octahedral [Zn(1,8-damnph)2(dca)2] (5) and [Zn(8-amq)2(dca)2] (6a) as well as two 1D polymeric chains catena-[Zn(isq)2(μ1,5-dca)2] (7) and catena-[Zn(N,N-Me2en)2(μ1,5-dca)]dca (8), where NTB = tris(2-benzimidazolylmethyl)amine, TPA = tris(2-pyridylmethyl)amine, 1,8-damnph = 1,8-diaminonaphthalene, 8-amq = 8-amino-quinoline, isq = isoquinoline (isq) and N,N-Me2en = N,N-dimethylethylenediamine. In general, with the exception of 6 and 8, the complexes exhibited luminescence emission in MeOH associated with red shift of the emission maxima, and the strongest visible fluorescence peak was detected at 421 nm (λex = 330 nm) in the case of Complex 5.
Collapse
|
5
|
Shmelev MA, Kuznetsova GN, Dolgushin FM, Voronina YK, Gogoleva NV, Kiskin MA, Ivanov VK, Sidorov AA, Eremenko IL. Influence of the Fluorinated Aromatic Fragments on the Structures of the Cadmium and Zinc Carboxylate Complexes Using Pentafluorobenzoates and 2,3,4,5-Tetrafluorobenzoates as Examples. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421020068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Steric crowding of a series of pyridine based ligands influencing the photophysical properties of Zn( II) complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00833a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The combination of α-acetamidocinnamic acid (HACA) and different N, N,N and N,N,N pyridines (dPy) leads to crowded Zn(ii) metal centers. The increasing bulkiness competes with the chelation enhanced effect (CHEF) in the resulting quantum yields.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Öztürkkan Özbek FE, Sertçelik M, Yüksek M, Elmalı A, Şahin E. The superiority of the classical synthesis compared to the hydrothermal synthesis upon the structural, optical absorption and fluorescent properties of new Cd(II) 3-fluorobenzoate complexes with Pyridine-3-carboxamide/Pyridine-3-carboxylate. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Inorganic Molecular Complexes: Potential for Growth of a New Subject Area in Self-Assembly. Top Curr Chem (Cham) 2020; 378:30. [PMID: 32124072 DOI: 10.1007/s41061-020-0294-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 01/30/2023]
Abstract
The non-covalent assemblies among multiple non-identical metal complexes have scopes to develop a new subject area. There are infinite numbers of ways for different combinations among inorganic neutral or ionic complexes. Each partnering species of those molecular complexes would also have diversities by changing metal ions, ligands, oxidation states of metal ions, and coordination numbers. Keeping a view of the emergence of framework materials and self-assembled nano-structures of metal complexes, the non-covalently linked assemblies of inorganic molecular complexes would have scopes for new nano-dimensional materials. This account provides a systematic description of the different inorganic molecular complexes for a concerted effort to develop a new area that would have importance in applied materials.
Collapse
|
9
|
Brahma R, Baruah JB. Self-Assemblies of Zinc Complexes for Aggregation-Induced Emission Luminogen Precursors. ACS OMEGA 2020; 5:3774-3785. [PMID: 32118194 PMCID: PMC7045797 DOI: 10.1021/acsomega.0c00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Positional isomers of zinc-nitrobenzoate complexes possessing pyridine -3-(or-4-) carboxamide are used for a comparative theoretical and experimental study to understand their utility as model complexes to understand the role of metal-to-ligand charge transfer in aggregation-induced emission (AIE). Among the five different model zinc complexes, four of them are non-ionic, and one is an ionic complex. The frontier molecular energy levels of different combinations of the positional isomeric complexes and the absorption maximum were ascertained by density functional theory calculations. The PolyQ value obtained from solid samples of each complex is different. Shifts in the emissions to higher wavelengths than the expected emission for the S1 to S0 transition were observed due to aggregations. The highest value of PolyQ among the complexes was 13.56% observed for emission at 439 nm (λex = 350) of the non-ionic complex, namely, (di-aqua)bis(pyridine-3-carboxamide)di(2-nitrobenzoato)zinc(II) monohydrate. Close resemblance in emission lifetime decay profiles of the solid samples of those complexes and the respective solutions of those complexes in dimethyl sulfoxide with or without water showed a common trend, suggesting aggregation-induced emission in each case. Aggregation-induced emission caused by adding water in dimethyl sulfoxide solution of each complex showed an initial increase without a shift in the emission wavelength followed by a quenching with a shift of the respective emission peak to a short wavelength. Dynamic light scattering studies showed an increase in the average particle sizes upon an increase in the concentration of water. This indicated initial participation of water molecules to form aggregates with the complexes, favoring an increase in the AIE intensity. Aggregation of each complex changes with the concentration of water, and an increase in the concentration of water beyond a characteristic limit causes lowering of the emission intensity to the short wavelength.
Collapse
|
10
|
Singh MP, Baruah JB. Photophysical properties of Ag, Zn and Cd - N-(4-pyridylmethyl)-1,8-naphthalimide complexes: influences of π-stacking and C–H⋯O interactions. CrystEngComm 2020. [DOI: 10.1039/d0ce00555j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In solution ligand and complexes show similiar fluorescence emission whereas emission in solid samples are distinguishable.
Collapse
Affiliation(s)
- Munendra Pal Singh
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| |
Collapse
|