1
|
Neurauter M, Vinzelj JM, Strobl SFA, Kappacher C, Schlappack T, Badzoka J, Rainer M, Huck CW, Podmirseg SM. Exploring near-infrared spectroscopy and hyperspectral imaging as novel characterization methods for anaerobic gut fungi. FEMS MICROBES 2024; 5:xtae025. [PMID: 39301047 PMCID: PMC11412074 DOI: 10.1093/femsmc/xtae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Neocallimastigomycota are a phylum of anaerobic gut fungi (AGF) that inhabit the gastrointestinal tract of herbivores and play a pivotal role in plant matter degradation. Their identification and characterization with marker gene regions has long been hampered due to the high inter- and intraspecies length variability in the commonly used fungal marker gene region internal transcribed spacer (ITS). While recent research has improved methodology (i.e. switch to LSU D2 as marker region), molecular methods will always introduce bias through nucleic acid extraction or PCR amplification. Here, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) are introduced as two nucleic acid sequence-independent tools for the characterization and identification of AGF strains. We present a proof-of-concept for both, achieving an independent prediction accuracy of above 95% for models based on discriminant analysis trained with samples of three different genera. We further demonstrated the robustness of the NIRS model by testing it on cultures of different growth times. Overall, NIRS provides a simple, reliable, and nondestructive approach for AGF classification, independent of molecular approaches. The HSI method provides further advantages by requiring less biomass and adding spatial information, a valuable feature if this method is extended to mixed cultures or environmental samples in the future.
Collapse
Affiliation(s)
- Markus Neurauter
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Julia M Vinzelj
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sophia F A Strobl
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Christoph Kappacher
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Tobias Schlappack
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Sabine M Podmirseg
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Rullan R, Colinet P, Desdion Q, Steinmann SN, Le Bahers T. Modeling the polychromism of oxide minerals: The case of alexandrite and cordierite. J Comput Chem 2024; 45:834-842. [PMID: 38146809 DOI: 10.1002/jcc.27288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
In this work, we investigate the spectroscopic properties of photochromic alexandrite and cordierite by TD-DFT. The objective is to assess the TD-DFT for the simulation of pleochroism (change of color depending on the crystallographic direction of the observation) and the change of color as a function of the light source. For these simulations, we compared an embedding where dangling bonds are saturated by hydrogen atoms and an electrostatic embedding. The electrostatic embedding provided numerically more stable results and allowed a good reproduction of the pleochroism of cordierite, based on a Fe2+-Fe3+ intervalence charge transfer transition. However, the pleochroism of alexandrite is not as well reproduced, suggesting that TD-DFT has some difficulties to reproduce the anisotropy of the transition dipole moment, an aspect that is not deeply documented in the literature.
Collapse
Affiliation(s)
- Raphaël Rullan
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France
| | - Pauline Colinet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France
| | - Quentin Desdion
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France
| | - Stephan N Steinmann
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France
| | - Tangui Le Bahers
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Turelli M, Ciofini I, Wang Q, Ottochian A, Labat F, Adamo C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: a theoretical perspective. Phys Chem Chem Phys 2023; 25:17769-17786. [PMID: 37377211 DOI: 10.1039/d3cp02364h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Qinfan Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
4
|
Kim N, Kim Y, Yun JM, Jeong SK, Lee S, Lee BZ, Shim J. Surface Coating of Titanium Dioxide Nanoparticles with a Polymerizable Chelating Agent and Its Physicochemical Property. ACS OMEGA 2023; 8:18743-18750. [PMID: 37273586 PMCID: PMC10233674 DOI: 10.1021/acsomega.3c00734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
Surface modification of inorganic nanoparticles is critical for the quality and performance of pigments, cosmetics, and composite materials. We covered the titanium dioxide nanoparticles' surface with 2-(acetoacetoxy) ethyl methacrylate, a polymerizable chelating agent. Through the in situ polymerization procedure, this molecule's β-ketoester moiety quickly coordinated with the metal atoms on titanium dioxide nanoparticles, and its methacrylate group formed homogeneous coating layers. This coating layer significantly reduced the photocatalytic activity of titanium dioxide nanoparticles and prevented their aggregation. This nanoparticle dispersion showed low viscosity up to the solid content of 60% (w/w) in the liquid dispersant. As a result, it increased the UV screening performance and dispersion stability. Additionally, this coating layer widened the absorption spectrum of titanium dioxide and could change the color of nanoparticles from pale yellow to brown. It can also be helpful for cosmetic applications.
Collapse
Affiliation(s)
- NaRi Kim
- Department
of Chemistry, Dongduk Women’s University, Seoul 02748, Korea
| | - Yerin Kim
- Department
of Chemistry, Dongduk Women’s University, Seoul 02748, Korea
| | - Je-Moon Yun
- Division
of Advanced Materials Engineering, Dong-Eui
University, Busan 47340, Korea
| | | | - Sulhae Lee
- R &
D Team, CHEMLAND, Gunpo 15850, Korea
| | | | - Jongwon Shim
- Department
of Chemistry, Dongduk Women’s University, Seoul 02748, Korea
| |
Collapse
|
5
|
Cool Surface Strategies with an Emphasis on the Materials Dimension: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The need to tackle the urban heat island effect demands the implementation of cool surfaces as a mitigation strategy. This study comprehensively reviews the evolution of this research field from a materials perspective. It provides a bibliometric analysis of the relevant literature using the SciMAT software processing of bibliographic records from 1995 to 2020, for the evolution of cool surfaces. The results obtained show an increased interest in the field from 2011 to 2020, particularly for roof applications, and present the scientific evolution of reflective materials. According to the materials dimension adopted by the development of the research field, the study is refined from a bibliometric analysis of 982 selected records for the analysis of five themes: (i) Pigments; (ii) Phase change materials; (iii) Retroreflective materials; (iv) Ceramic materials; and (v) Glass. These materials present promising results in terms of their solar reflectance performances in the mitigation of the urban heat island phenomenon. At the end of this review, recommendations for future studies are provided for the creation of economic and environmentally friendly materials based on waste glass recycling. This study represents a valuable contribution that provides a scientific background with regard to cool surfaces from a materials perspective for future investigations.
Collapse
|
6
|
Cangiotti J, Scatto M, Araya-Hermosilla E, Micheletti C, Crivellari D, Balloni A, Pucci A, Benedetti A. Valorization of seashell waste in polypropylene composites: An accessible solution to overcome marine landfilling. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Macii F, Cupellini L, Stifano M, Santolaya J, Pérez-Arnaiz C, Pucci A, Barone G, García B, Busto N, Biver T. Combined spectroscopic and theoretical analysis of the binding of a water-soluble perylene diimide to DNA/RNA polynucleotides and G-quadruplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119914. [PMID: 34015745 DOI: 10.1016/j.saa.2021.119914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
We present here a combined spectroscopic and theoretical analysis of the binding of N,N'-bis(2-(1-piperazino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide dichloride (PZPERY) to different biosubstrates. Absorbance titrations and circular dichroism experiments, melting studies and isothermal calorimetry (ITC) titrations reveal a picture where the binding to natural double-stranded DNA is very different from that to double and triple-stranded RNAs (poly(A)∙poly(U) and poly(U)∙poly(A)⁎poly(U)). As confirmed also by the structural and energetic details clarified by density functional theory (DFT) calculations, intercalation occurs for DNA, with a process driven by the combination of aggregates disruption and monomers intercalation. Oppositely, for RNAs, no intercalation but groove binding with the formation of supramolecular aggregates is observed. Among all the tested biosubstrates, the affinity of PZPERY towards DNA G-quadruplexes (G4) is the greatest one with a preference for human telomeric G4s. Focusing on hybrid G4 forms, either sitting-atop ("tetrad-parallel") or lateral ("groove-parallel") binding modes were considered in the discussion of the experimental results and molecular dynamics (MD) simulations. Both turned out to be possible concurrently, in agreement also with the experimental binding stoichiometries higher than 2:1.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Mariassunta Stifano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Javier Santolaya
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Cristina Pérez-Arnaiz
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Andrea Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Begoña García
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Natalia Busto
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
8
|
Computational Approaches to the Electronic Properties of Noble Metal Nanoclusters Protected by Organic Ligands. NANOMATERIALS 2021; 11:nano11092409. [PMID: 34578725 PMCID: PMC8468547 DOI: 10.3390/nano11092409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
Organometallic nanoparticles composed by metal cores with sizes under two nanometers covered with organic capping ligands exhibit intermediate properties between those of atoms and molecules on one side, and those of larger metal nanoparticles on the other. In fact, these particles do not show a peculiar metallic behavior, characterized by plasmon resonances, but instead they have nonvanishing band-gaps, more along molecular optical properties. As a consequence, they are suitable to be described and investigated by computational approaches such as those used in quantum chemistry, for instance those based on the time-dependent density functional theory (TD-DFT). Here, I present a short review of the research performed from 2014 onward at the University of Modena and Reggio Emilia (Italy) on the TD-DFT interpretation of the electronic spectra of different organic-protected gold and/or silver nanoclusters.
Collapse
|
9
|
Su L, Shu L, Shi B, Hang Y, Huang J. Construction of Enhanced Photostability Anthraquinone-Type Nanovesicles Based on a Novel Two-Step Supramolecular Assembly Strategy and Their Application on Multiband Laser-Responsive Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43458-43472. [PMID: 34464092 DOI: 10.1021/acsami.1c14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The photostability and dispersity under aggregation states always become an obstacle for the development of small-molecular organic dye (SMOD) composites. Herein, a novel supramolecular assembly strategy with a two-step assembly method is implemented to encapsulate SMODs for improving their photostability and acquiring uniformly dispersed nanoaggregates in aqueous solution. By the novel assembly strategy, photodegradation rates of the anthraquinone-type dyes can decrease significantly, and the stability of dispersed nanoassembly bodies can be improved in solution. Based on the two-step supramolecular assembly strategy, a new kind of aqueous processing composite system can be developed for preparing multiband laser-responsive devices and in situ healing of optical composite films. This two-step supramolecular assembly strategy can provide a new template and reference for improving the defects of SMODs and fabricating high-performance optical devices.
Collapse
Affiliation(s)
- Linlin Su
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lan Shu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Binbin Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yixiao Hang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jin Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
10
|
Micheletti C, Minei P, Carlotti M, Mattoli V, Muniz-Miranda F, Perfetto A, Ciofini I, Adamo C, Ruggeri G, Pucci A. Mechanochromic LLDPE Films Doped with NIR Reflective Paliogen Black. Macromol Rapid Commun 2020; 42:e2000426. [PMID: 33089579 DOI: 10.1002/marc.202000426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Indexed: 11/10/2022]
Abstract
The perylene bisimide derivative Paliogen Black (P-black) is proposed as a new chromogenic probe that shows visible (vis) and near-infrared (NIR) responses after mechanical solicitations of host linear low-density polyethylene (LLDPE) films. P-black is reported to display strong absorption in the vis spectrum and unusual reflective and cooling features in the NIR region. Uniaxial deformation of the 2.5, 5, and 10 wt% P-black/LLDPE films yields a dichroic absorption under polarized light with color variations attributed by the computational analysis to the distinct anisotropic behavior of the transition dipole moments of P-black chromophores. When LLDPE films are deformed, P-black aggregates reduce their size from ≈30-40 µm to ≈5-10 µm that, in turn, causes reflectivity losses of about 30-40% at the maximum elongation. This gives rise to warming of 5-6 °C of the locally oriented film placed in contact with a black substrate under the illumination with an IR lamp for 5 s. These features combined with the high sensitivity of the vis-NIR response toward mechanical solicitations render P-black as a new solution to detect uniaxial deformations of plastic films through both optical and thermal outputs.
Collapse
Affiliation(s)
- Cosimo Micheletti
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Pierpaolo Minei
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Marco Carlotti
- Center for Micro-BioRobotics @SSSA, Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Virgilio Mattoli
- Center for Micro-BioRobotics @SSSA, Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Francesco Muniz-Miranda
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Anna Perfetto
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Ilaria Ciofini
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Carlo Adamo
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Giacomo Ruggeri
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Andrea Pucci
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
11
|
Abstract
This study reports for the first time the use of waterborne polymers as host matrices for luminescent solar concentrators (LSCs). Notably, three types of waterborne polymer dispersions based either on acrylic acid esters and styrene (Polidisp® 7602), acrylic and methacrylic acid esters (Polidisp® 7788) or aliphatic polyester-based polyurethane (Tecfin P40) were selected as amorphous coatings over glass substrates. Water soluble Basic Yellow 40 (BY40) and Disperse Red 277 (DR277) were utilized as fluorophores and the derived thin polymer films (100 μm) were found homogeneous within the dye range of concentration investigated (0.3–2 wt.%). The optical efficiency determination (ηopt) evidenced LSCs performances close to those collected from benchmark polymethylmethacrylate (PMMA) thin films and Lumogen Red F350 (LR) with the same experimental setup. Noteworthy, maximum ηopt of 9.5 ± 0.2 were recorded for the Polidisp® 7602 matrix containing BY40, thus definitely supporting the waterborne polymer matrices for the development of high performance and cost-effective LSCs.
Collapse
|
12
|
Huet L, Perfetto A, Muniz-Miranda F, Campetella M, Adamo C, Ciofini I. General Density-Based Index to Analyze Charge Transfer Phenomena: From Models to Butterfly Molecules. J Chem Theory Comput 2020; 16:4543-4553. [DOI: 10.1021/acs.jctc.0c00296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Léon Huet
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Anna Perfetto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Francesco Muniz-Miranda
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Marco Campetella
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
- France and Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| |
Collapse
|
13
|
Pitchaimani J, Kundu A, Anthony SP, Moon D, Madhu V. Facile Synthetic Route for Direct Access of Perylenediimide Single Crystals in High Yield through In Situ Crystallization. ChemistrySelect 2020. [DOI: 10.1002/slct.201904347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jayaraman Pitchaimani
- Department of Chemistry Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore- 641 114 Tamil Nadu India
| | - Anu Kundu
- School of Chemical & Biotechnology SASTRA Deemed University, Thanjavur- 613401 Tamil Nadu India
| | | | - Dohyun Moon
- Beamline Department Pohang Accelerator Laboratory, 80 Jigokro- 127 beongil, Nam-gu, Pohang Gyeongbuk Korea
| | - Vedichi Madhu
- Department of Chemistry Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore- 641 114 Tamil Nadu India
| |
Collapse
|