1
|
Nan L, Liu C, Song H, Wang X, Wang P, Fang L. Probing the mechanism of release process from metal coordination-based acrylic pressure-sensitive adhesives: Synergistic effect of coordination and hydrogen bonding for controlled drug release. Int J Pharm 2024; 649:123575. [PMID: 37926177 DOI: 10.1016/j.ijpharm.2023.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Hydrogen bonding, ionic interactions, and dipole-dipole interactions have been extensively studied to control drug release from patches. However, metal coordination bonding has not been fully explored for the control of transdermal drug release. In this study, metal coordination-based acrylic pressure-sensitive adhesives (PSAs) were designed and synthesized in order to systemically elucidate the effect of metal coordination on drug release from acrylic PSAs. Ketoprofen (KET) and donepezil (DNP) were selected as model drugs. Results showed that the burst release rate of KET was controlled by N-[tris(hydroxymethyl)methyl]acrylamide (NAT) and Fe3+, while the DNP release rate had no significant changes. It was found that the PSA-drug interaction, rather than the molecular mobility of PSA, played a dominant role in the controlled release process of KET. The hydrogen bond interaction between NAT and KET controlled the release process, while the coordination bond interaction between Fe3+ and KET further slowed down the release of KET. In conclusion, it was found that the controlled release of KET was achieved by the synergistic effect of coordination bonding and hydrogen bonding, which opens up a facile but powerful avenue for the design of brand-new controlled release systems and new opportunities for their application in transdermal drug delivery.
Collapse
Affiliation(s)
- Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Haoyuan Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Xiaoxu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Wang
- Department of Machine Learning, Intelligent Instrumentation Development, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Liang Fang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China; Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
2
|
Roy C, Chowdhury D, Sanfui MDH, Roy JSD, Mitra M, Dutta A, Chattopadhyay PK, Singha NR. Solid waste collagen-associated fabrication of magnetic hematite nanoparticle@collagen nanobiocomposite for emission-adsorption of dyes. Int J Biol Macromol 2023; 242:124774. [PMID: 37196727 DOI: 10.1016/j.ijbiomac.2023.124774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
The strategic utilization of hazardous particulate waste in eliminating environmental pollution is an important research hotspot. Herein, abundantly available hazardous solid collagenic waste of leather industry is converted into stable hybrid nanobiocomposite (HNP@SWDC) comprising magnetic hematite nanoparticles (HNP) and solid waste derived collagen (SWDC) via co-precipitation method. The structural, spectroscopic, surface, thermal, and magnetic properties; fluorescence quenching; dye selectivity; and adsorption are explored via microstructural analyzes of HNP@SWDC and dye adsorbed-HNP@SWDC using 1H nuclear magnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared (FTIR), X-ray photoelectron, and fluorescence spectroscopies; thermogravimetry; field-emission scanning electron microscopy; and vibrating-sample magnetometry (VSM). The intimate interaction of SWDC with HNP and elevated magnetic properties of HNP@SWDC are apprehended via amide-imidol tautomerism associated nonconventional hydrogen bondings, disappearance of goethite specific -OH def. in HNP@SWDC, and VSM. The as-fabricated reusable HNP@SWDC is employed for removing methylene blue (MB) and rhodamine B (RhB). Chemisorption of RhB/MB in HNP@SWDC via ionic, electrostatic, and hydrogen bonding interactions alongside dimerization of dyes are realized by ultraviolet-visible, FTIR, and fluorescence studies; pseudosecond order fitting; and activation energies. The adsorption capacity = 46.98-56.14/22.89-27.57 mg g-1 for RhB/MB is noted using 0.01 g HNP@SWDC within 5-20 ppm dyes and 288-318 K.
Collapse
Affiliation(s)
- Chandan Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India; Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - M D Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
3
|
Nan L, Liu J, Liu C, Quan P, Guo J, Fang L. Fe(III)-coordinated N-[tris(hydroxymethyl)methyl]acrylamide-modified acrylic pressure-sensitive adhesives with enhanced adhesion and cohesion for efficient transdermal application. Acta Biomater 2022; 152:186-196. [PMID: 36064108 DOI: 10.1016/j.actbio.2022.08.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Pressure-sensitive adhesives are critical to the product's safety, efficacy, and quality in transdermal drug delivery systems. However, many defects of transdermal patches (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) remain. Herein, the N-[tris(hydroxymethyl)methyl]acrylamide (NAT)-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) (AA-NAT/Fe3+) was creatively proposed. Results demonstrated that the adhesiveness and cohesiveness of the optimized AA-NAT/Fe3+ were higher by 1.8- and 9.7-fold, respectively, than those of commercially available DURO-TAK® 87-4098 due to the hydrogen bonding interaction of NAT-skin interface and coordination of NAT-Fe3+. Moreover, compared with that of DURO-TAK® 87-4098, the adhesion time of AA-NAT/Fe3+ on the human forearm was remarkably prolonged, and no "dark ring" phenomenon was observed for AA-NAT/Fe3+ after removal. After clonidine (CLO) was loaded into AA-NAT/Fe3+, controlled drug release and a drug transdermal behavior were endowed for CLO@AA-NAT/Fe3+in vitro and in vivo. AA-NAT/Fe3+ still maintained superiority in adhesion and cohesion properties after CLO loading. These observations would contribute to the development of pressure-sensitive adhesives with outstanding adhesion and cohesion for transdermal patches. STATEMENT OF SIGNIFICANCE: This N-[tris(hydroxymethyl)methyl]acrylamide-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) has enhanced adhesion and cohesion properties, which provide a simple but effective strategy to solve the problems (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) in existing transdermal patches.
Collapse
Affiliation(s)
- Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| |
Collapse
|
4
|
Peng J, Yuan H, Ren T, Liu Z, Qiao J, Ma Q, Guo X, Ma G, Wu Y. Fluorescent nanocellulose-based hydrogel incorporating titanate nanofibers for sorption and detection of Cr(VI). Int J Biol Macromol 2022; 215:625-634. [PMID: 35772640 DOI: 10.1016/j.ijbiomac.2022.06.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
Chromium pollution is a major environmental concern; thus, effective and multifunctional adsorbents for removing the Cr(VI) ion are urgently needed. A fluorescent nanocellulose-based hydrogel (FNH) incorporating titanate nanofibers (TNs) was developed for the sorption and detection of Cr(VI) ion. The chemical and physical structures of the hydrogels, as well as their sorption and detection properties, were studied. The predicted maximum adsorption capacity and the lowest detection limit of FNH were 648.4 mg/g and 0.039 μg/L, respectively. Furthermore, the sorption and detection mechanisms of FNH were discussed in detail. These results showed that the excellent sorption and detection might be mainly attributed to the three-dimensional (3D) porous structure constructed by TNs and cellulose nanocrystals modified with carbon dots, which improved the sorption ability and provided the rapid visual response to Cr(VI). Furthermore, cost analysis showed that FNH was cheaper than activated carbon in removing the Cr(VI) ion. This work established a facile technique in developing low-cost and multifunctional adsorbents.
Collapse
Affiliation(s)
- Junwen Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China; College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanmeng Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tingting Ren
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhihuan Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianzheng Qiao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Guoxin Ma
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China.
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
5
|
Deb Roy JS, Chowdhury D, Sanfui MH, Hassan N, Mahapatra M, Ghosh NN, Majumdar S, Chattopadhyay PK, Roy S, Singha NR. Ratiometric pH Sensing, Photophysics, and Cell Imaging of Nonaromatic Light-Emitting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:2990-3005. [PMID: 35579235 DOI: 10.1021/acsabm.2c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, four nontraditional fluorescent polymers (NTFPs) of varying N,N-dimethyl-2-propenamide (DMPA) and butyl prop-2-enoate (BPE) mole ratios, i.e., 2:1 (NTFP1), 4:1 (NTFP2), 8:1 (NTFP3), and 16:1 (NTFP4), are prepared via random polymerization in water. The maximum fluorescence enhancement of NTFP3 makes it suitable for ratiometric pH sensing, Cu(II) sensing, and pH-dependent cell imaging of Madin-Darby canine kidney (MDCK) cells. The oxygen donor functionalities of NTFP3 involved in binding and sensing with Cu(II) ions are studied by absorption, emission, electron paramagnetic resonance, Fourier transform infrared (FTIR), and O1s/Cu2p X-ray photoelectron spectroscopies (XPS). The spectral responses of the ratiometric pH sensor within 1.5-11.5 confirm 22 and 44 nm red shifts in absorption and ratiometric emission, respectively. The striking color changes from blue (436 nm) to green (480 nm) via an increase in pH are thought to be the stabilization of the charged canonical form of tertiary amide, i.e., -C(O-)═N+(CH3)2, realized from the changes in the absorption/fluorescence spectra and XPS/FTIR analyses. The through-space n-π* interactions in the NTFP3 aggregate, N-branching-associated rigidity, and nonconventional intramolecular hydrogen bondings of adjacent NTFP3 moieties in the NTFP3 aggregate contribute to aggregation-enhanced emissions (AEEs). Here, structures of NTFP3, NTFP3 aggregate, and Cu(II)-NTFP3; absorption; n-π* interactions; hydrogen bondings; AEEs; and binding with Cu(II) are ascertained by density functional theory, time-dependent density functional theory, and reduced density gradient calculations. The excellent limits of detection and Stern-Volmer constants of NTFP3 are 2.24 nM/0.14234 ppb and 4.26 × 103 M-1 at pH = 6.5 and 0.95 nM/0.06037 ppb and 4.90 × 103 M-1 at pH = 8.0, respectively. Additionally, the Stokes shift and binding energy of NTFP3 are 13,636 cm-1/1.69 eV and -4.64 eV, respectively. The pH-dependent MDCK cell imaging ability of noncytotoxic NTFP3 is supported via fluorescence imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
Collapse
Affiliation(s)
- Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal 732103, India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| |
Collapse
|
6
|
Ma L, Liu J, Li C, Xiao Y, Wu S, Zhang B. A facile and economical method to synthesize a novel wide gamut fluorescent copolyester with outstanding properties. Polym Chem 2022. [DOI: 10.1039/d1py01222c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of high molecular weight copolyesters PExBTyAm were synthesized by a simple and economical two-step polycondensation method, and for the first time we found that the copolyesters exhibited an green fluorescence under 365 nm UV light.
Collapse
Affiliation(s)
- Lele Ma
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiajian Liu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Chuncheng Li
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Yaonan Xiao
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Shaohua Wu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Bo Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| |
Collapse
|
7
|
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan WZ. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev 2021; 50:12616-12655. [PMID: 34610056 DOI: 10.1039/d0cs01087a] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.
Collapse
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wubeiwen Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
8
|
Kanti Chattopadhyay P, Ranjan Singha N. MOF and derived materials as aerogels: Structure, property, and performance relations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Shahr El-Din AM, Sayed MA, Monir TM, Sami NM, Aly AMI. Sponge-like Ca-alginate/Lix-84 beads for selective separation of Mo(VI) from some rare earth elements. Int J Biol Macromol 2021; 184:689-700. [PMID: 34174304 DOI: 10.1016/j.ijbiomac.2021.06.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/30/2022]
Abstract
In this investigation, a novel alginate complex was developed for the selective separation of molybdenum (Mo(VI)) ions from some rare earth elements (REEs). In this regard, alginate as a natural polysaccharide was impregnated and modified with 2-hydroxy-5-nonylacetophenone oxime (Lix-84) and characterized using FT-IR, TGA/DTA and SEM-EDX. The relation between medium acidity, adsorption kinetics, sorbent dose, isotherm models, temperature and Mo(VI) recovery was investigated. It was concluded that the impregnation stage promoted the Mo(VI) separation. The kinetics and isotherm data were well-fitted and matched with the pseudo-first-order model and Langmuir isotherm model; respectively. The Langmuir maximum adsorption capacity of Mo(VI) reached 72.2 mg/g. The developed material showed excellent separation performance towards Mo ions over the investigated REEs. The desorption and recovery of the loaded Mo(VI) ions were achieved using 1.0 M HCl. Reutilization of Alg/Lix-84 was confirmed up to three adsorption-desorption cycles with no damage of the beads as proved with SEM analysis. The adsorption mechanism of molybdenum onto Alg/Lix-84 was elucidated through FTIR and XPS measurements and was found to be governed by both electrostatic interaction and ion exchange. Therefore, the developed material has a promising potential for the selective separation of molybdenum from REEs-containing solution.
Collapse
Affiliation(s)
| | - Moubarak A Sayed
- Hot Lab. Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Central Lab. for Elemental and Isotopic Analysis, Nuclear Research Center, Egyptian Atomic Energy Authority, Inshas, Cairo, Egypt
| | - Tarek M Monir
- Hot Lab. Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Nesreen M Sami
- Hot Lab. Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Amal M I Aly
- Hot Lab. Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
10
|
Bhat R, Begum NS. Synthesis, characterization and molecular docking studies of new indol(1 H-3-yl)pyrimidine derivatives: Insights into their role in DNA interaction. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:619-634. [PMID: 33988075 DOI: 10.1080/15257770.2021.1922700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
This study reports the synthesis of new indol(1H-3-yl) pyrimidine derivatives 4(a-e) using various substituted indole-3-carbaldehydes, urea and malononitrile in the presence of ammonium chloride. The resulting compounds were characterized using analytical and spectroscopic methods. The molecular docking study exhibits that among the synthesized compounds, 4(c-e) have great binding ability toward B-DNA. The binding efficiencies of compounds 4(c-e) with CT-DNA were evaluated via UV-visible absorption spectral and viscosity studies. The findings establish that the compounds firmly bind through an intercalative mode to CT-DNA and provide a unique pattern of DNA binding. The photo-induced cleavage indicates that the compounds have UV-visible photo nuclease properties toward plasmid DNA as revealed by agarose gel electrophoresis approach.
Collapse
Affiliation(s)
- Radhika Bhat
- Department of Studies in Chemistry, Bangalore University, Bangalore, Karnataka, India
| | - Noor Shahina Begum
- Department of Studies in Chemistry, Bangalore University, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Dutta A, Mahapatra M, Deb M, Ghosh NN, Chattopadhyay PK, Singha NR. Nonconjugated Biocompatible Macromolecular Luminogens for Sensing and Removals of Fe(III) and Cu(II): DFT Studies on Selective Coordination(s) and On-Off Sensing. Macromol Rapid Commun 2020; 42:e2000522. [PMID: 33210389 DOI: 10.1002/marc.202000522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/11/2020] [Indexed: 12/16/2022]
Abstract
This work reports the design and synthesis of two nonaromatic biocompatible macromolecular luminogens, i.e., 2-(dimethylamino)ethyl methacrylate-co-2-(dimethylamino)ethyl 3-(N-(methylol)acrylamido)-2-methylpropanoate-co-N-(methylol)acrylamide/DMAEMA-co-DMAENMAMP-co-NMA (P1) and methacrylic acid-co-3-(N-(methylol)acrylamido)-2-methylpropanoic acid-co-N-(methylol)acrylamide/MEA-co-NMAMPA-co-NMA (P2), prepared through in situ anchored acrylamido-ester/DMAENMAMP and acrylamido-acid/NMAMPA third comonomers, respectively, in a facile polymerization of two non-luminous monomers in water medium to circumvent the drawbacks related to aggregation-caused quenching of aromatic luminogens. The structures of P1/P2, in situ anchored comonomers, fluorophores, N-branching associated n-π* interactions, and hydrogen bonding assisted aggregation-enhanced emissions are comprehended by nuclear magnetic resonance, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible, thermogravimetric analysis (TGA), dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence lifetime, and fluorescence imaging. P1 and P2 are appropriate for sensitive detections/exclusions of Fe(III)/Cu(II) and cell-imaging. The intrinsic fluorescence, on-off sensing, selective coordinations of Fe(III) and Cu(II) with fluorophores, emission quenching mechanisms, and removals of Fe(III) and Cu(II) are investigated by DFT/NTO analyses of P1/P2 and Fe(III)-P1 and Cu(II)-P2 complexes, XPS, and isotherms and kinetics parameters. The excellent biocompatibilities, comparable limit of detections, i.e., 1.70 × 10-7 and 1.59 × 10-7 [m], and higher adsorption capacities, i.e., 77.25 and 154.13 mg g-1 , at low ppm; 303 K; and pH = 7 compel P1/P2 to be acceptable for multipurpose applications.
Collapse
Affiliation(s)
- Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal, 732103, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
12
|
|
13
|
Mahapatra M, Dutta A, Mitra M, Karmakar M, Ghosh NN, Chattopadhyay PK, Singha NR. Intrinsically Fluorescent Biocompatible Terpolymers for Detection and Removal of Bi(III) and Cell Imaging. ACS APPLIED BIO MATERIALS 2020; 3:6155-6166. [DOI: 10.1021/acsabm.0c00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur 732103, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
14
|
Mahapatra M, Dutta A, Roy JSD, Deb M, Das U, Banerjee S, Dey S, Chattopadhyay PK, Maiti DK, Singha NR. Synthesis of Biocompatible Aliphatic Terpolymers via In Situ Fluorescent Monomers for Three-in-One Applications: Polymerization of Hydrophobic Monomers in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6178-6187. [PMID: 32418427 DOI: 10.1021/acs.langmuir.0c00636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biocompatible, nonconventional, multifunctional, purely aliphatic, light-emitting terpolymers, i.e., acrylonitrile-co-3-(N-isopropylacrylamido)propanenitrile-co-N-isopropylacrylamide (AN-co-NIPAMPN-co-NIPA, 1) and acrylonitrile-co-3-(N-hydroxymethylacrylamido)propanenitrile-co-N-hydroxymethylacrylamide (AN-co-NHMAMPN-co-NHMA, 2), were designed and synthesized via N-H-functionalized C-C + N-C-coupled in situ protrusions/grafting of fluorophore monomers, i.e., NIPAMPN and NHMAMPN, by solution polymerization of two highly hydrophobic nonemissive monomers in water. These scalable and reusable 1 and 2 were suitable for high-performance three-in-one applications, such as Fe(III) sensors, imaging of Madin-Darby canine kidney (MDCK) and human lung cancer (A549) cells, and security inks. The structures of 1 and 2, N-C-coupled in situ attachments/grafting of third fluorophore monomers, grafting events, and aggregation-enhanced emissions (AEEs), were analyzed by 1H and 13C NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric (TG) analysis, high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), fluorescence imaging, and fluorescence lifetime. The geometries, electronic structures, and absorption/emission properties of 1 and 2 at optimized compositions were examined by density functional theory (DFT), time-dependent DFT (TDDFT), and natural transition orbital (NTO) analyses. The limits of detection were 3.20 × 10-7 and 1.37 × 10-7 M for 1 and 2, respectively. The excellent biocompatibility of 1 and 2 was confirmed by >95% retention of MDCK and A549 cell morphologies.
Collapse
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Ujjal Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|