1
|
Yan C, Cai X, Zhou X, Luo Z, Deng J, Tian X, Shi J, Li W, Luo Y. Boosting peroxymonosulfate activation via Fe-Cu bimetallic hollow nanoreactor derived from copper smelting slag for efficient degradation of organics: The dual role of Cu. J Colloid Interface Sci 2025; 678:858-871. [PMID: 39222606 DOI: 10.1016/j.jcis.2024.08.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Valorization of iron-rich metallurgical slags in the construction of Fenton-like catalysts has an appealing potential from the perspective of sustainable development. For the first time, copper smelting slag (CSS) was utilized as the precursor to synthesize hollow sea urchin-like Fe-Cu nanoreactors (Cu1.5Fe1Si) to activate peroxymonosulfate (PMS) for chlortetracycline hydrochloride (CTC) degradation. The hyper-channels and nano-sized cavities were formed in the catalysts owing to the induction and modification of Cu, not only promoting the in-situ growth of silicates and the formation of cavities due to the etching of SiO2 microspheres, but also resulting the generation of nanotubes through the distortion and rotation of the nanosheets. It was found that 100 % CTC degradation rate can be achieved within 10 min for Cu1.5Fe1Si, 75 times higher than that of Cu0Fe1Si (0.0024 up to 0.18 M-1‧min-1). The unique nanoconfined microenvironment structure could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of active species. Density functional theory (DFT) calculations show that Cu1.5Fe1Si has strong adsorption energy and excellent electron transport capacity for PMS, and Fe-Fe sites are mainly responsible for the activation of PMS, while Cu assists in accelerating the Fe(II)/Fe(Ⅲ) cycle and promotes the catalytic efficiency. The excellent mineralization rate (83.32 % within 10 min) and efficient treatment of CTC in consecutive trials corroborated the high activity and stability of the Cu1.5Fe1Si. This work provides a new idea for the rational design of solid waste-based eco-friendly functional materials, aiming at consolidating their practical application in advanced wastewater treatment.
Collapse
Affiliation(s)
- Cuirong Yan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming, Yunnan 650033, China
| | - Xiunan Cai
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xintao Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Zhongqiu Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiguang Deng
- Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xincong Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jinyu Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenhao Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongming Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
2
|
Sun M, Wang Z, Xiao J, Tian X, Ma X, Wang S. AgNWs/Fe 3O 4@NC Conductive Network Hierarchical Assembly to Prepare Flexible EMI Shielding Textile. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304622. [PMID: 37988675 DOI: 10.1002/smll.202304622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/07/2023] [Indexed: 11/23/2023]
Abstract
With the rapid development of high-power electronic instruments and communication technology, efficient electromagnetic shielding materials with strong absorption of electromagnetic waves and low reflection characteristics have become the focus of the world's attention. This study designs and synthesizes N-doped carbon-coated hollow Fe3O4 nanospheres (Fe3O4@NC) by spraying Ag nanowires (AgNWs) on textiles as conductive networks. Because of the high permeability and hollow structure Fe3O4@NC, electromagnetic wave goes through a unique process of "absorption, reflection, and reabsorption" when it passes through the surface of the composite textile. In X-band (≈8.2-12.4 GHz), the average electromagnetic interference shielding effectiveness (EMI SE) reaches 50.1 dB, while the reflectance shielding efficiency (SER) is only 2.6 dB, and the average reflectance power coefficient (R) is as low as 0.45. The composite fabric has excellent properties and provides an effective strategy for electromagnetic interference shielding based on absorption.
Collapse
Affiliation(s)
- Minghui Sun
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Zhuoping Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Junwu Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Xin Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Xin Ma
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| |
Collapse
|
3
|
Tang X, Lin G, Liu C, Cao T, Xia Y, Yi K, Zhang S, Liu X. Lightweight and Tough Multilayered Composite Based on Poly(aryl ether nitrile)/Carbon Fiber Cloth for Electromagnetic Interference Shielding. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Zhong Y, Tang J, Zhang X, Wei X, Li M, Feng Y, Wang J. Flexible and durable poly para-phenylene terephthalamide fabric constructed by polydopamine and corrugated Co-Ni-P alloy with reflection characteristic for electromagnetic interference shielding. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Wei X, Li P, Zhou H, Hu X, Liu D, Wu J, Wang Y. Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112125. [PMID: 33601257 DOI: 10.1016/j.jphotobiol.2021.112125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Gemcitabine (GEM) and its derivatives of deoxycytosine is a promising anticancer candidate which is effective for the treatment of various cancers including lung cancer via cascade targetting Erk/Mek/Raf/Ras pathway and blocking the proliferation of the tumor cells. In this present work, we have described reduced graphene oxide (rGO) in the presence of anticancer utilizing ascorbic acid as reducing agents for lung cancer treatment. GEM reduced graphene oxide (termed as GEM-rGO) has resulted in a smooth and transparent morphological surface, which was confirmed by various spectroscopical investigations. The anticancer drug-loaded rGO has displayed remarkable cytotoxic activities against a panel of lung cancer cell lines when compared to the untreated lung cancer cells. Further, we examined the morphological observation of the cancer cell death was monitored through the fluorescence microscopic examinations. In addition, the cell deaths of the lung cancer cells were observed by the flow cytometry analyses. In addition, the non-toxic nature of potent GEM-rGO and GEM-rGO + NIR was confirmed by in vivo systemic toxicity analysis. Besides, the higher safety feature of the GEM-rGO and GEM-rGO + NIR was evidenced by histological analyses of the mice organs. The subcutaneous injection of GEM-rGO and GEM-rGO + NIR into mice bearing A549 xenografts more effectively inhibited the tumor than the free GEM. Based on the outcomes, we can summarise that the GEM reduced graphene oxide (GEM-rGO) can be used as a promising drug candidate for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Peixian Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Hongfeng Zhou
- Department of Medical Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150088, Heilongjiang, China
| | - Xiaowei Hu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Dan Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jin Wu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Yi Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|