1
|
Lopat'eva ER, Krylov IB, Terent'ev AO. N-Hydroxyphthalimide/TiO 2 Catalyzed Addition of Ethers, Alkylarenes and Aldehydes to Azodicarboxylates under Visible Light. Chemistry 2025; 31:e202404687. [PMID: 39888700 DOI: 10.1002/chem.202404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/02/2025]
Abstract
The addition of carbon-centered radicals to double bonds is one of the most atom-efficient approaches to the formation of new C-C or C-heteroatom bonds. Existing approaches for the generation of carbon-centered radicals often require elevated temperatures, UV radiation or expensive transition metal catalysts. In this work, a photocatalytic system based on a heterogeneous TiO2 catalyst and a redox organocatalyst N-hydroxyphthalimide is proposed for the generation of carbon-centered radicals from C(sp3)-H substrates or aldehydes at room temperature under visible light irradiation. The developed approach was successfully applied to the addition of ethers, alkylarenes and aldehydes to azodicarboxylates. Titanium oxide acts as a photocatalyst, producing phthalimide-N-oxyl radicals from N-hydroxyphthalimide, thereby enabling the organocatalytic process in solution. Phthalimide-N-oxyl radicals act as catalytically active species that cleave C-H bonds to form carbon-centered radicals.
Collapse
Affiliation(s)
- Elena R Lopat'eva
- Laboratory for Studies of Homolytic Reactions, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Igor B Krylov
- Laboratory for Studies of Homolytic Reactions, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Alexander O Terent'ev
- Laboratory for Studies of Homolytic Reactions, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| |
Collapse
|
2
|
Roy S, Unnikrishnan KA, Chakraborty A, Kuniyil R, Chatterjee I. Exploiting N-Centered Umpolung Reactivity of α-Iminomalonates for the Synthesis of N-Sulfenylimines and Sulfonamides. Org Lett 2024; 26:1629-1634. [PMID: 38380999 DOI: 10.1021/acs.orglett.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
An efficient and interesting N-centered umpolung method has been disclosed to construct beneficial S-N bonds, furnishing N-sulfenylimines, which can readily be converted into the corresponding sulfonamide derivatives in a one-pot sequential operation. N-Sulfenylimines are potent intermediates in organic synthesis, whereas sulfonamides are of major molecular interest due to their rich biological activities and wide applicability in medicinal chemistry. Owing to the simple reaction conditions and setup, this protocol displays a broad and versatile substrate scope, resulting in excellent functional group tolerability toward the synthesis of both N-sulfenylimines and sulfonamides. A density functional theory (DFT) computed and experimentally supported convenient mechanism has been proposed for this unique method.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | | | - Arijit Chakraborty
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad, Kanjikode (P. O.), Palakkad, Kerala 678623, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Mandal T, Das S, Maji R, De Sarkar S. Visible-Light-Induced Hydrogen Atom Transfer En Route to Exocylic Alkenylation of Cyclic Ethers Enabled by Electron Donor-Acceptor Complex. Org Lett 2023; 25:7727-7732. [PMID: 37844302 DOI: 10.1021/acs.orglett.3c03099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An electron donor-acceptor (EDA)-triggered hydrogen atom transfer (HAT) process is developed for the efficient generation of an α-alkoxy radical from cyclic ethers to synthesize exocyclic alkenylated ethers with exclusive E-selectivity. A judiciously chosen donor-acceptor pair (DABCO and maleimide) serves as the desired HAT reagent under visible light irradiation without using any photocatalyst or peroxide. A wide variety of substrates were explored to demonstrate the diverse applicability and practical viability of this cross-dehydrogenative transformation. Detailed mechanistic studies revealed a radical reaction pathway under the oxidative environment.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Rohan Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
4
|
Meyer F, Halasyamani PS, Masson G. Advances in Organic and Inorganic Photoredox Catalysis. ACS ORGANIC & INORGANIC AU 2023; 3:1-3. [PMID: 36855535 PMCID: PMC9954384 DOI: 10.1021/acsorginorgau.2c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 12/13/2022]
|
5
|
Tan Y, Xuekun W, Han YP, Zhang Y, Zhang HY, Zhao J. Visible-Light-Induced Oxyalkylation of 1,2,4-Triazine-3,5(2 H, 4 H)-diones with Ethers via Oxidative Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:8551-8561. [PMID: 35731594 DOI: 10.1021/acs.joc.2c00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient method to synthesize 6-oxyalkylated 1,2,4-triazine-3,5(2H, 4H)-diones has been developed via visible-light-induced cross-dehydrogenative coupling reaction between 1,2,4-triazine-3,5(2H, 4H)-diones and ethers with a wide range of functional group tolerance. The present transformation employs the cheap and low-toxic 2-tert-butylanthraquinone as a metal-free photocatalyst and air as a green oxidant at room temperature. Moreover, this reaction can also be driven by sunlight as a clean energy resource. The synthetic utility of this method is further demonstrated by gram-scale reaction and application in the preparation of key intermediates of bioactive molecules.
Collapse
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Wu Xuekun
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|