Khan GA, Lu Y, Wang P. Plasmon-Enhanced Refractive Index Sensing of Biomolecules Based on Metal-Dielectric-Metal Metasurface in the Infrared Regime.
ACS OMEGA 2024;
9:1416-1423. [PMID:
38222543 PMCID:
PMC10785300 DOI:
10.1021/acsomega.3c07809]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Infrared plasmonic sensors offer enhanced biomolecule detection potential over visible sensors due to unique spectral fingerprints, enhanced sensitivity, lower interference, and label-free, nondestructive analysis capabilities. Moreover, multimode plasmonic sensors are highly advantageous for their ability to outperform single-mode counterparts through long-wavelength tuning, enhanced information retrieval, and reduced false results through multimode data cross-referencing. In this study, to achieve a high quality factor and enhanced sensitivity simultaneously, we employed silver square block arrays (SSBs) in a metal-dielectric-metal configuration. The proposed design supports three modes resulting from gap plasmons and propagating surface plasmon resonances, enabling the detection of a broad spectrum of biomolecules. Designed sensors demonstrate notable sensitivities in different modes: Mode I achieves 525 nm/RIU, Mode II reaches 1287 nm/RIU, and Mode III records 812 nm/RIU, while maintaining the quality factor of Mode I-17, Mode II-356, and Mode III-107. The figure of merit for Mode I is 7 RIU-1, for Mode II it is 375 RIU-1, and for Mode III it is 98 RIU-1. Different concentrations of glucose and hemoglobin are efficiently detected with the proposed sensor, showing great potential for its biosensing application and real-time monitoring of biomolecule dynamics. Taken together, the proposed sensor exhibits the capability to identify diverse types of biomolecules and holds the potential to serve as a preliminary screening tool for various biomolecules.
Collapse