1
|
Sun Z, Khau B, Dong H, Takacs CJ, Yuan S, Sun M, Mosevitzky Lis B, Nguyen D, Reichmanis E. Carboxyl-Alkyl Functionalized Conjugated Polyelectrolytes for High Performance Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9299-9312. [PMID: 38027548 PMCID: PMC10653087 DOI: 10.1021/acs.chemmater.3c02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Contemporary design principles for organic mixed ionic electronic conductors (OMIECs) are mostly based on the ethylene glycol moiety, which may not be representative of the OMIEC class as a whole. Furthermore, glycolated polymers can be difficult to synthesize and process effectively. As an emerging alternative, we present a series of polythiophenes functionalized with a hybrid carboxyl-alkyl side chain. By variation of the alkyl spacer length, a comprehensive evaluation of both the impact of carboxylic acid functionalization and alkyl spacer length was conducted. COOH-functionalization endows the polymer with preferential intrinsic low-swelling behavior and water processability to yield solvent-resistant conjugated polyelectrolytes while retaining substantial electroactivity in aqueous environments. Advanced in situ techniques, including time-resolved spectroelectrochemistry and Raman spectroscopy, are used to interrogate the materials' microstructure, ionic-electronic coupling, and operational stability in devices. To compare these materials' performance to state-of-the-art technology for the design of OMIECs, we benchmarked the materials and demonstrated significant application potential in both planar and interdigitated organic electrochemical transistors (OECTs). The polythiophene bearing carboxyl-butyl side chains exhibits greater electrochemical performance and faster doping kinetics within the polymer series, with a record-high OECT performance among conjugated polyelectrolytes ([μC*]pOECT = 107 ± 4 F cm-1 V-1 s-1). The results provide an enhanced understanding of structure-property relationships for conjugated polyelectrolytes operating in aqueous media and expand the materials options for future OMIEC development. Further, this work demonstrates the potential for conjugated polymers bearing alkyl-COOH side chains as a path toward robust OMIEC designs that may facilitate further facile (bio)chemical functionalization for a range of (bio)sensing applications.
Collapse
Affiliation(s)
- Zeyuan Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Brian Khau
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hao Dong
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Christopher J. Takacs
- Stanford
Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shuhan Yuan
- Department
of Applied Health Science, School of Public Health, Indiana University, Bloomington, Indiana 47405, United States
| | - Mengting Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Bar Mosevitzky Lis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Dang Nguyen
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Elsa Reichmanis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|