1
|
Sujanani R, Nguyen PH, Gordon LW, Bamford JT, Zele A, Pedretti BJ, Lynd NA, Clément RJ, Segalman RA. Influence of Water Sorption on Ionic Conductivity in Polyether Electrolytes at Low Hydration. ACS Macro Lett 2024:64-71. [PMID: 39711369 DOI: 10.1021/acsmacrolett.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Ion-containing polymers are subject to a wide range of hydration conditions across electrochemical and water treatment applications. Significant work on dry polymer electrolytes for batteries and highly swollen membranes for water purification has informed our understanding of ion transport under extreme conditions. However, knowledge of intermediate conditions (i.e., low hydration) is essential to emerging applications (e.g., electrolyzers, fuel cells, and lithium extraction). Ion transport under low levels of hydration is distinct from the extreme conditions typically investigated, and the relevant physics cannot be extrapolated from existing knowledge, stifling materials design. In this study, we conducted ion transport measurements in LiTFSI-doped polyethers that were systematically hydrated from dry conditions. A semiautomated apparatus that performs parallel measurements of water uptake and ionic conductivity in thin-film polymers under controlled humidity was developed. For the materials and swelling range considered in this study (i.e., <0.07 g water/g dry polymer electrolyte), ionic conductivity depends nonlinearly on water uptake, with the initial sorbed water weakly affecting conductivity. With additional increases in swelling, more significant increases in conductivity were observed. Remarkably, changes in conductivity induced by water sorption were correlated with the number of water molecules per lithium ion, with the normalized molar conductivity of different samples effectively collapsing onto one another until this unit of hydration exceeded the solvation number of lithium ions under aqueous conditions. These results provide important knowledge regarding the effects of trace water contamination on conductivity measurements in polymer electrolytes and demonstrate that the lithium-ion solvation number marks a key transition point regarding the influence of water on ion transport in ion-containing polymers.
Collapse
Affiliation(s)
- Rahul Sujanani
- Department of Chemical Engineering, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Phong H Nguyen
- Department of Chemical Engineering, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Leo W Gordon
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory (MRL), The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - James T Bamford
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alexandra Zele
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Benjamin J Pedretti
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raphaële J Clément
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory (MRL), The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory (MRL), The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Kumar R, Zhu Q. Dynamic density functional theory of polymers with salt in electric fields. J Chem Phys 2024; 161:104902. [PMID: 39254960 DOI: 10.1063/5.0222997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
We present a dynamic density functional theory for modeling the effects of applied electric fields on the local structure of polymers with added salt (polymer electrolytes). Time-dependent equations for the local electrostatic potential and volume fractions of polymer, cation, and anion of added salt are developed using the principles of linear irreversible thermodynamics. For such a development, a field theoretic description of the free energy of polymer melts doped with salts is used, which captures the effects of local variations in the dielectric function. Connections of the dynamic density functional theory with experiments are established by relating the three phenomenological Onsager's transport coefficients of the theory to the mutual diffusion of electrolyte, ionic conductivity, and transference number of one of the ions. The theory is connected with a statistical mechanical model developed by Bearman and Kirkwood [J. Chem. Phys. 28, 136 (1958)] after relating the three transport coefficients to friction coefficients. The steady-state limit of the dynamic density functional theory is used to understand the effects of dielectric inhomogeneity on the phase separation in polymer electrolytes. The theory developed here provides not only a way to connect with experiments but also to develop multi-scale models for studying connections between local structure and ion transport in polymer electrolytes.
Collapse
Affiliation(s)
- Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Qinyu Zhu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
3
|
Rajahmundry GK, Patra TK. Understanding Ion Distribution and Diffusion in Solid Polymer Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18942-18949. [PMID: 39185775 DOI: 10.1021/acs.langmuir.4c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Solid polymer electrolytes (SPEs)─polymer melts with added salts─exhibit ion conduction and high mechanical properties, and are thus promising materials for future energy storage devices. The ion conductivity in an SPE is intricately connected to the salt ion distribution in the polymer matrix. The relationship between ion diffusion and ion distribution in SPEs remains unresolved. Here, we conduct coarse-grained molecular dynamics simulations and establish correlations between ion distribution and transport for a phenomenological SPE model. We propose phase diagrams of SPEs as a function of ion pair size, ion concentration, and the Bjerrum length of the material. A crossover from a discrete ion aggregate to a percolated ion aggregate is demonstrated as a function of ion pair size for low ion concentration in the SPE. The ion diffusion shows a strong correlation with its size, as has been found experimentally. The work provides important design strategies for controlling the ion distribution and enhancing ion conductivity in a polymer matrix.
Collapse
Affiliation(s)
- Ganesh K Rajahmundry
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tarak K Patra
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Stakem KG, Leslie FJ, Gregory GL. Polymer design for solid-state batteries and wearable electronics. Chem Sci 2024; 15:10281-10307. [PMID: 38994435 PMCID: PMC11234879 DOI: 10.1039/d4sc02501f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Solid-state batteries are increasingly centre-stage for delivering more energy-dense, safer batteries to follow current lithium-ion rechargeable technologies. At the same time, wearable electronics powered by flexible batteries have experienced rapid technological growth. This perspective discusses the role that polymer design plays in their use as solid polymer electrolytes (SPEs) and as binders, coatings and interlayers to address issues in solid-state batteries with inorganic solid electrolytes (ISEs). We also consider the value of tunable polymer flexibility, added capacity, skin compatibility and end-of-use degradability of polymeric materials in wearable technologies such as smartwatches and health monitoring devices. While many years have been spent on SPE development for batteries, delivering competitive performances to liquid and ISEs requires a deeper understanding of the fundamentals of ion transport in solid polymers. Advanced polymer design, including controlled (de)polymerisation strategies, precision dynamic chemistry and digital learning tools, might help identify these missing fundamental gaps towards faster, more selective ion transport. Regardless of the intended use as an electrolyte, composite electrode binder or bulk component in flexible electrodes, many parallels can be drawn between the various intrinsic polymer properties. These include mechanical performances, namely elasticity and flexibility; electrochemical stability, particularly against higher-voltage electrode materials; durable adhesive/cohesive properties; ionic and/or electronic conductivity; and ultimately, processability and fabrication into the battery. With this, we assess the latest developments, providing our views on the prospects of polymers in batteries and wearables, the challenges they might address, and emerging polymer chemistries that are still relatively under-utilised in this area.
Collapse
Affiliation(s)
- Kieran G Stakem
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Freddie J Leslie
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Georgina L Gregory
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
6
|
Mor J, Sharma SK. Decoupling of ion-transport from polymer segmental relaxation and higher ionic-conductivity in poly(ethylene oxide)/succinonitrile composite-based electrolytes having low lithium salt doping. Phys Chem Chem Phys 2024; 26:13306-13315. [PMID: 38639464 DOI: 10.1039/d4cp00735b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Only limited enhancement in room-temperature ionic-conductivity for poly(ethylene oxide), PEO, based electrolytes is possible due to coupling between ionic-conductivity and segmental relaxation. In the present study, we have achieved ionic-conductivity of 1.07 × 10-3 and 6.20 × 10-4 S cm-1 at 313 and 298 K, respectively, by adding 45 wt% of succinonitrile (SN) in PEO having low LiTFSI loading (Li : EO = 1 : 20). This enhancement in the ionic-conductivity is attributed to faster ion transport (diffusion coefficient, D = 3.63 × 10-5 cm2 s-1) occurring through the ion-transport channels as confirmed by positron annihilation lifetime spectroscopy. The ionic-transport through these channels is observed to be highly decoupled from the segmental relaxations as confirmed using broadband dielectric spectroscopy through Ratner's approach. The observed decoupling of ionic-conductivity from PEO segmental relaxation in PEO-SN composite-based electrolytes would be useful to design rather inexpensive all solid-state polymer electrolytes for Li ion batteries.
Collapse
Affiliation(s)
- J Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - S K Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
7
|
Sau S, Kundu S. Fabrication of highly stretchable salt and solvent blended PEDOT:PSS/PVA free-standing films: non-linear to linear electrical conduction response. RSC Adv 2024; 14:5193-5206. [PMID: 38332796 PMCID: PMC10851924 DOI: 10.1039/d3ra08260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Nowadays, ductile and conducting polymeric materials are highly utilizable in the realm of stretchable organic electronics. Here, mechanically ductile and electrically conducting free-standing films are fabricated by blending different solvents such as dimethyl sulfoxide (DMSO), diethylene glycol (DEG) and N,N-dimethylformamide (DMF), and salts such as silver nitrate (AgNO3), zinc chloride (ZnCl2), copper chloride (CuCl2) and indium chloride (InCl3) with the homogeneous solution of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA) through solution casting method. The presence of salt modifies the PEDOT conformation from benzoid to quinoid, and induces the evolution of different morphologies. ZnCl2 or AgNO3 blended films have lower surface roughness and good miscibility with polymers, while CuCl2 or InCl3 blended films have relatively higher surface roughness as well as irregularly distributed surface morphology. Some crystalline domains are also formed due to the salt agglomeration. The presence of salt inside PEDOT:PSS/PVA/solvent system changes the current-voltage response from non-linear to linear. Among all the films, zinc salt blended PEDOT:PSS/PVA/DMSO, PEDOT:PSS/PVA/DEG and PEDOT:PSS/PVA/DMF films have higher conductivity, and zinc salt blended PEDOT:PSS/PVA/DEG film shows the highest conductivity of 0.041 ± 0.0014 S cm-1, while silver salt blended PEDOT:PSS/PVA/DMSO, PEDOT:PSS/PVA/DEG and PEDOT:PSS/PVA/DMF films have higher elongation at break, and silver salt blended PEDOT:PSS/PVA/DMSO film shows the highest elongation at break of 670 ± 31%. Both the charge carriers, i.e., electrons and ions, contribute to the electrical conduction, and the presence of hydrogen bonds and ionic interactions among PEDOT+, PSS-, PVA, residual solvent, salt cations and anions modifies the film behaviours. Among all the films, ZnCl2 blended PEDOT:PSS/PVA/DMSO film offers relatively superior behaviours having higher conductivity (0.025 ± 0.0013 S cm-1) and elongation at break (517 ± 15%), and therefore can have potential applications in the fields of wearable devices, bioelectronics, etc.
Collapse
Affiliation(s)
- Sanjib Sau
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
8
|
Chen X, Kong X. Nanoscale Confinement Effects on Ionic Conductivity of Solid Polymer Electrolytes: The Interplay between Diffusion and Dissociation. NANO LETTERS 2023. [PMID: 37220138 DOI: 10.1021/acs.nanolett.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Solid polymer electrolytes (SPEs) are attractive for next-generation lithium metal batteries but still suffer from low ionic conductivity. Nanostructured materials offer design concepts for SPEs with better performance. Using molecular dynamics simulation, we examine SPEs under nanoscale confinement, which has been demonstrated to accelerate the transport of neutral molecules such as water. Our results show that while ion diffusion indeed accelerates by more than 2 orders of magnitude as the channel diameter decreases from 15 to 2 nm, the ionic conductivity does not increase significantly in parallel. Instead, the ionic conductivity shows a nonmonotonic variation, with an optimal value above, but on the same order as, its bulk counterparts. This trend is due to enhanced ion association with decreasing channel size, which reduces the number of effective charge carriers. This effect competes with accelerated ion diffusion, leading to the nonmonotonicity in ion conductivity.
Collapse
Affiliation(s)
- Xiupeng Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Hatakeyama-Sato K, Uchima Y, Kashikawa T, Kimura K, Oyaizu K. Extracting higher-conductivity designs for solid polymer electrolytes by quantum-inspired annealing. RSC Adv 2023; 13:14651-14659. [PMID: 37197684 PMCID: PMC10183718 DOI: 10.1039/d3ra01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Data-driven optimal structure exploration has become a hot topic in materials for energy-related devices. However, this method is still challenging due to the insufficient prediction accuracy of material properties and large exploration space for candidate structures. We propose a data trend analysis system for materials using quantum-inspired annealing. Structure-property relationships are learned by a hybrid decision tree and quadratic regression algorithm. Then, ideal solutions to maximize the property are explored by a Fujitsu Digital Annealer, which is unique hardware that can quickly extract promising solutions from the ample search space. The system's validity is investigated with an experimental study examining solid polymer electrolytes as potential components for solid-state lithium-ion batteries. A new trithiocarbonate polymer electrolyte offers a conductivity of 10-6 S cm-1 at room temperature, even though it is in a glassy state. Molecular design through data science will enable accelerated exploration of functional materials for energy-related devices.
Collapse
Affiliation(s)
| | - Yasuei Uchima
- Department of Applied Chemistry, Waseda University Tokyo 169-8555 Japan
| | | | | | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University Tokyo 169-8555 Japan
| |
Collapse
|