1
|
Xin Y, Foster SW, Makey DM, Parker D, Bradow J, Wang X, Berritt S, Mongillo R, Grinias JP, Kennedy RT. High-Throughput Capillary Liquid Chromatography Using a Droplet Injection and Application to Reaction Screening. Anal Chem 2024; 96:4693-4701. [PMID: 38442211 PMCID: PMC11001260 DOI: 10.1021/acs.analchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The cycle time of a standard liquid chromatography (LC) system is the sum of the time for the chromatographic run and the autosampler injection sequence. Although LC separation times in the 1-10 s range have been demonstrated, injection sequences are commonly >15 s, limiting throughput possible with LC separations. Further, such separations are performed on relatively large bore columns requiring flow rates of ≥5 mL/min, thus generating large volumes of mobile phase waste when used for large scale screening and increasing the difficulty in interfacing to mass spectrometry. Here, a droplet injector system was established that replaces the autosampler with a four-port, two-position valve equipped with a 20 nL internal loop interfaced to a syringe pump and a three-axis positioner to withdraw sample droplets from a well plate. In the system, sample and immiscible fluid are pulled alternately from a well plate into a capillary and then through the injection valve. The valve is actuated when sample fills the loop to allow sequential injection of samples at high throughput. Capillary LC columns with 300 μm inner diameter were used to reduce the consumption of mobile phase and sample. The system achieved 96 separations of 20 nL droplet samples containing 3 components in as little as 8.1 min with 5-s cycle time. This system was coupled to a mass spectrometer through an electrospray ionization source for high-throughput chemical reaction screening.
Collapse
Affiliation(s)
- Yue Xin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samuel W Foster
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Deklin Parker
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James Bradow
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Xiaochun Wang
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Simon Berritt
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Robert Mongillo
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Gao M, Wang L, Jing F, Zhang F, Tao H, Hu Y. The Efficacy of Pemigatinib in Advanced NSCLC With FGFR Aberration: Case Report. Clin Lung Cancer 2024; 25:e62-e66. [PMID: 37940412 DOI: 10.1016/j.cllc.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Ming Gao
- Department of Medical Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lijie Wang
- Department of Medical Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fangfang Jing
- Department of Medical Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Fan Zhang
- Department of Medical Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haitao Tao
- Department of Medical Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Makey DM, Diehl RC, Xin Y, Murray BE, Stoll DR, Ruotolo BT, Grinias JP, Narayan ARH, Lopez-Carillo V, Stark M, Johnen P, Kennedy RT. High-Throughput Liquid Chromatographic Analysis Using a Segmented Flow Injector with a 1 s Cycle Time. Anal Chem 2023; 95:17028-17036. [PMID: 37943345 PMCID: PMC11027085 DOI: 10.1021/acs.analchem.3c03719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
High-throughput screening (HTS) workflows are revolutionizing many fields, including drug discovery, reaction discovery and optimization, diagnostics, sensing, and enzyme engineering. Liquid chromatography (LC) is commonly deployed during HTS to reduce matrix effects, distinguish isomers, and preconcentrate prior to detection, but LC separation time often limits throughput. Although subsecond LC separations have been demonstrated, they are rarely utilized during HTS due to limitations associated with the speed of common autosamplers. In this work, these limits are overcome by utilizing droplet microfluidics for sample introduction. In the method, a train of samples segmented by air are continuously pumped into the inlet of an LC injection valve that is actuated once each sample fills the sample loop. Coupled with 2.1 mm diameter × 5 mm long columns packed with 2.7 μm superficially porous C18 particles operated at 5 mL/min, the injector enabled separation of 3 components at 1 s/sample and analysis of a 96-well plate in 1.6 min with <2% peak area relative standard deviation. Analyte-dependent carryover was minimized by including wash droplets composed of organic solvent in between sample droplets. High-throughput LC coupled with mass spectrometric detection using the segmented flow injector was applied to a screen of inhibitors of a cytochrome P450-catalyzed hydroxylation reaction. Measurements of the reaction substrate and product concentrations made using fast LC with the segmented flow injector correlated well with measurements made using a more conventional, 3 min LC method. These results demonstrate the potential for droplet microfluidics to be used for sample introduction during high-throughput LC analysis.
Collapse
Affiliation(s)
- Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Roger C Diehl
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Xin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bridget E Murray
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Alison R H Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Burocziova M, Danek P, Oravetzova A, Chalupova Z, Alberich-Jorda M, Macurek L. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia 2023; 37:2209-2220. [PMID: 37709843 PMCID: PMC10624630 DOI: 10.1038/s41375-023-02030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.
Collapse
Affiliation(s)
- Monika Burocziova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Anna Oravetzova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Zuzana Chalupova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, V Uvalu 84, Praha, 150 06, Czech Republic.
| | - Libor Macurek
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
| |
Collapse
|