1
|
Doorduin J. Imaging neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:277-291. [PMID: 40122630 DOI: 10.1016/b978-0-443-19104-6.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Imaging can help us understand the role neuroglia plays in health and during the course of neurologic disorders. In vivo microscopy has had a great impact on our understanding of how neuroglia behaves during health and disease. While initially the technique was hindered by the limited penetration depth in brain tissue, recent advancements lead to increasing possibilities for imaging of deeper brain structures, even at super-resolution. Unfortunately, in vivo microscopy cannot be applied in a clinical setting and thus cannot be used to study neuroglia in patient populations. However, noninvasive imaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI) can. PET has provided valuable information on the involvement of neuroglia in neurologic disorders. To more specifically image microglia and astrocytes, many new PET biomarkers have been defined for which PET tracers are continuously developed, evaluated, and improved. A cell-type specific PET tracer with favorable imaging characteristics can have a huge impact on neuroglia research. While being less sensitive than PET, MRI is a more accessible imaging technique. Initially, only general neuroinflammation processes could be imaged with MRI, but newly developed methods and sequences allow for increasing cell-type specificity. Overall, while each imaging method comes with limitations, improvements are continuously made, all with the aim to truly understand the role that neuroglia play in health and disease.
Collapse
Affiliation(s)
- Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
3
|
Hui W, Pu S, Gao X, Wang Y, Zha X, Ding K, Zhang X, Cheng D, Shi H, Luo Z. Evaluation of a Positron Emission Tomography Tracer Targeting Colony-Stimulating Factor 1 Receptor for Detecting Pulmonary Inflammation. Mol Pharm 2024; 21:3979-3991. [PMID: 38935927 DOI: 10.1021/acs.molpharmaceut.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) is a type III receptor tyrosine kinase that is crucial for immune cell activation, survival, proliferation, and differentiation. Its expression significantly increases in macrophages during inflammation, playing a crucial role in regulating inflammation resolution and termination. Consequently, CSF1R has emerged as a critical target for both therapeutic intervention and imaging of inflammatory diseases. Herein, we have developed a radiotracer, 1-[4-((7-(dimethylamino)quinazolin-4-yl)oxy)phenyl]-3-(4-[18F]fluorophenyl)urea ([18F]17), for in vivo positron emission tomography (PET) imaging of CSF1R. Compound 17 exhibits a comparable inhibitory potency against CSF1R as the well-known CSF1R inhibitor PLX647. The radiosynthesis of [18F]17 was successfully performed by radiofluorination of aryltrimethyltin precursor with a yield of approximately 12% at the end of synthesis, maintaining a purity exceeding 98%. In vivo stability and biodistribution studies demonstrate that [18F]17 remains >90% intact at 30 min postinjection, with no defluorination observed even at 60 min postinjection. The PET/CT imaging study in lipopolysaccharide-induced pulmonary inflammation mice indicates that [18F]17 offers a more sensitive characterization of pulmonary inflammation compared to traditional [18F]FDG. Notably, [18F]17 shows a higher discrepancy in uptake ratio between mice with pulmonary inflammation and the sham group. Furthermore, the variations in [18F]17 uptake ratio observed on day 7 and day 14 correspond to lung density changes observed in CT imaging. Moreover, the expression levels of CSF1R on day 7 and day 14 follow a trend similar to the uptake pattern of [18F]17, indicating its potential for accurately characterizing CSF1R expression levels and effectively monitoring the pulmonary inflammation progression. These results strongly suggest that [18F]17 has promising prospects as a CSF1R PET tracer, providing diagnostic opportunities for pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Wenxue Hui
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suyun Pu
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyan Gao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaochuan Zha
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kezhi Ding
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zonghua Luo
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Adhikari A, Chauhan K, Adhikari M, Tiwari AK. Colony Stimulating Factor-1 Receptor: An emerging target for neuroinflammation PET imaging and AD therapy. Bioorg Med Chem 2024; 100:117628. [PMID: 38330850 DOI: 10.1016/j.bmc.2024.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Although neuroinflammation is a significant pathogenic feature of many neurologic disorders, its precise function in-vivo is still not completely known. PET imaging enables the longitudinal examination, quantification, and tracking of different neuroinflammation biomarkers in living subjects. Particularly, PET imaging of Microglia, specialised dynamic immune cells crucial for maintaining brain homeostasis in central nervous system (CNS), is crucial for staging the neuroinflammation. Colony Stimulating Factor- 1 Receptor (CSF-1R) PET imaging is a novel method for the quantification of neuroinflammation. CSF-1R is mainly expressed on microglia, and neurodegenerative disorders greatly up-regulate its expression. The present review primarily focuses on the development, pros and cons of all the CSF-1R PET tracers reported for neuroinflammation imaging. Apart from neuroinflammation imaging, CSF-1R inhibitors are also reported for the therapy of neurodegenerative diseases such as Alzheimer's disease (AD). AD is a prevalent, advancing, and fatal neurodegenerative condition that have the characteristic feature of persistent neuroinflammation and primarily affects the elderly. The aetiology of AD is profoundly influenced by amyloid-beta (Aβ) plaques, intracellular neurofibrillary tangles, and microglial dysfunction. Increasing evidence suggests that CSF-1R inhibitors (CSF-1Ri) can be helpful in preclinical models of neurodegenerative diseases. This review article also summarises the most recent developments of CSF-1Ri-based therapy for AD.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India.
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California 22860, Mexico
| | - Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb, Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Lindsley C, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals: A "Hot" Topic. ACS Pharmacol Transl Sci 2024; 7:1-7. [PMID: 38230278 PMCID: PMC10789131 DOI: 10.1021/acsptsci.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 01/18/2024]
Affiliation(s)
- Craig
W. Lindsley
- Department
of Pharmacology, Department of Chemistry, and Vanderbilt Institute
of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E. Müller
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical
Research and Development, Novartis, via Ribes 5, Colleretto Giacosa 10010, Italy
| |
Collapse
|
6
|
Lindsley CW, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals: A "Hot" Topic. J Med Chem 2023; 66:16457-16463. [PMID: 38109062 DOI: 10.1021/acs.jmedchem.3c02281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- Craig W Lindsley
- Department of Pharmacology, Department of Chemistry, and Vanderbilt Institute of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical Research and Development, Novartis, via Ribes 5, Colleretto Giacosa 10010, Italy
| |
Collapse
|
7
|
Kalita M, Park JH, Kuo RC, Hayee S, Marsango S, Straniero V, Alam IS, Rivera-Rodriguez A, Pandrala M, Carlson ML, Reyes ST, Jackson IM, Suigo L, Luo A, Nagy SC, Valoti E, Milligan G, Habte F, Shen B, James ML. PET Imaging of Innate Immune Activation Using 11C Radiotracers Targeting GPR84. JACS AU 2023; 3:3297-3310. [PMID: 38155640 PMCID: PMC10751761 DOI: 10.1021/jacsau.3c00435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Chronic innate immune activation is a key hallmark of many neurological diseases and is known to result in the upregulation of GPR84 in myeloid cells (macrophages, microglia, and monocytes). As such, GPR84 can potentially serve as a sensor of proinflammatory innate immune responses. To assess the utility of GPR84 as an imaging biomarker, we synthesized 11C-MGX-10S and 11C-MGX-11Svia carbon-11 alkylation for use as positron emission tomography (PET) tracers targeting this receptor. In vitro experiments demonstrated significantly higher binding of both radiotracers to hGPR84-HEK293 cells than that of parental control HEK293 cells. Co-incubation with the GPR84 antagonist GLPG1205 reduced the binding of both radiotracers by >90%, demonstrating their high specificity for GPR84 in vitro. In vivo assessment of each radiotracer via PET imaging of healthy mice illustrated the superior brain uptake and pharmacokinetics of 11C-MGX-10S compared to 11C-MGX-11S. Subsequent use of 11C-MGX-10S to image a well-established mouse model of systemic and neuro-inflammation revealed a high PET signal in affected tissues, including the brain, liver, lung, and spleen. In vivo specificity of 11C-MGX-10S for GPR84 was confirmed by the administration of GLPG1205 followed by radiotracer injection. When compared with 11C-DPA-713-an existing radiotracer used to image innate immune activation in clinical research studies-11C-MGX-10S has multiple advantages, including its higher binding signal in inflamed tissues in the CNS and periphery and low background signal in healthy saline-treated subjects. The pronounced uptake of 11C-MGX-10S during inflammation, its high specificity for GPR84, and suitable pharmacokinetics strongly support further investigation of 11C-MGX-10S for imaging GPR84-positive myeloid cells associated with innate immune activation in animal models of inflammatory diseases and human neuropathology.
Collapse
Affiliation(s)
- Mausam Kalita
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jun Hyung Park
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Renesmee Chenting Kuo
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Samira Hayee
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Sara Marsango
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland,
U.K.
| | - Valentina Straniero
- Department
of Pharmaceutical Sciences, University of
Milan, via Luigi Mangiagalli
25, 20133 Milano, Italy
| | - Israt S. Alam
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | | | - Mallesh Pandrala
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Mackenzie L. Carlson
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
| | - Samantha T. Reyes
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Isaac M. Jackson
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Lorenzo Suigo
- Department
of Pharmaceutical Sciences, University of
Milan, via Luigi Mangiagalli
25, 20133 Milano, Italy
| | - Audrey Luo
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Sydney C. Nagy
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ermanno Valoti
- Department
of Pharmaceutical Sciences, University of
Milan, via Luigi Mangiagalli
25, 20133 Milano, Italy
| | - Graeme Milligan
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland,
U.K.
| | - Frezghi Habte
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Bin Shen
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Michelle L. James
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Altomonte S, Pike VW. Candidate Tracers for Imaging Colony-Stimulating Factor 1 Receptor in Neuroinflammation with Positron Emission Tomography: Issues and Progress. ACS Pharmacol Transl Sci 2023; 6:1632-1650. [PMID: 37974622 PMCID: PMC10644394 DOI: 10.1021/acsptsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.
Collapse
Affiliation(s)
- Stefano Altomonte
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Ikenuma H, Ogata A, Koyama H, Ji B, Ishii H, Yamada T, Abe J, Seki C, Nagai Y, Ichise M, Minamimoto T, Higuchi M, Zhang MR, Kato T, Ito K, Suzuki M, Kimura Y. Synthesis and evaluation of a novel PET ligand, a GSK'963 analog, aiming at autoradiography and imaging of the receptor interacting protein kinase 1 in the brain. EJNMMI Radiopharm Chem 2023; 8:31. [PMID: 37853253 PMCID: PMC10584749 DOI: 10.1186/s41181-023-00217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer's disease (AD) has been reported; RIPK1 is involved in microglia's phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1. RESULTS (S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK'963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK'963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK'963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK'963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47-115 GBq/μmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively. CONCLUSIONS We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK'963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to detect any evidence of specific binding to RIPK1 despite its good brain permeability. Further development of radioligands with a higher binding affinity for RIPK1 in vivo and more stable metabolite profiles compared with the current compound may be required.
Collapse
Affiliation(s)
- Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science (GUMS), Kani, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Bin Ji
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Hideki Ishii
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takashi Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Chie Seki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Masaaki Suzuki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|