2
|
Barresi E, Martini C, Da Settimo F, Greco G, Taliani S, Giacomelli C, Trincavelli ML. Allosterism vs. Orthosterism: Recent Findings and Future Perspectives on A 2B AR Physio-Pathological Implications. Front Pharmacol 2021; 12:652121. [PMID: 33841166 PMCID: PMC8024542 DOI: 10.3389/fphar.2021.652121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
The development of GPCR (G-coupled protein receptor) allosteric modulators has attracted increasing interest in the last decades. The use of allosteric modulators in therapy offers several advantages with respect to orthosteric ones, as they can fine-tune the tissue responses to the endogenous agonist. Since the discovery of the first A1 adenosine receptor (AR) allosteric modulator in 1990, several efforts have been made to develop more potent molecules as well as allosteric modulators for all adenosine receptor subtypes. There are four subtypes of AR: A1, A2A, A2B, and A3. Positive allosteric modulators of the A1 AR have been proposed for the cure of pain. A3 positive allosteric modulators are thought to be beneficial during inflammatory processes. More recently, A2A and A2B AR allosteric modulators have also been disclosed. The A2B AR displays the lowest affinity for its endogenous ligand adenosine and is mainly activated as a consequence of tissue damage. The A2B AR activation has been found to play a crucial role in chronic obstructive pulmonary disease, in the protection of the heart from ischemic injury, and in the process of bone formation. In this context, allosteric modulators of the A2B AR may represent pharmacological tools useful to develop new therapeutic agents. Herein, we provide an up-to-date highlight of the recent findings and future perspectives in the field of orthosteric and allosteric A2B AR ligands. Furthermore, we compare the use of orthosteric ligands with positive and negative allosteric modulators for the management of different pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Giovanni Greco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | | | | |
Collapse
|
3
|
Arsova A, Møller TC, Hellyer SD, Vedel L, Foster SR, Hansen JL, Bräuner-Osborne H, Gregory KJ. Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 as Tool Compounds to Study Signaling Bias. Mol Pharmacol 2021; 99:328-341. [PMID: 33602724 DOI: 10.1124/molpharm.120.000185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022] Open
Abstract
Positive allosteric modulation of metabotropic glutamate subtype 5 (mGlu5) receptor has emerged as a potential new therapeutic strategy for the treatment of schizophrenia and cognitive impairments. However, positive allosteric modulator (PAM) agonist activity has been associated with adverse side effects, and neurotoxicity has also been observed for pure PAMs. The structural and pharmacological basis of therapeutic versus adverse mGlu5 PAM in vivo effects remains unknown. Thus, gaining insights into the signaling fingerprints, as well as the binding kinetics of structurally diverse mGlu5 PAMs, may help in the rational design of compounds with desired properties. We assessed the binding and signaling profiles of N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA), 3-cyano-N-(2,5-diphenylpyrazol-3-yl)benzamide (CDPPB), and 1-[4-(4-chloro-2-fluoro-phenyl)piperazin-1-yl]-2-(4-pyridylmethoxy)ethenone [compound 2c, a close analog of 1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone] in human embryonic kidney 293A cells stably expressing mGlu5 using Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and receptor internalization assays. Of the three allosteric ligands, only CDPPB had intrinsic agonist efficacy, and it also had the longest receptor residence time and highest affinity. MPPA was a biased PAM, showing higher positive cooperativity with orthosteric agonists in ERK1/2 phosphorylation and Ca2+ mobilization over IP1 accumulation and receptor internalization. In primary cortical neurons, all three PAMs showed stronger positive cooperativity with (S)-3,5-dihydroxyphenylglycine (DHPG) in Ca2+ mobilization over IP1 accumulation. Our characterization of three structurally diverse mGlu5 PAMs provides further molecular pharmacological insights and presents the first assessment of PAM-mediated mGlu5 internalization. SIGNIFICANCE STATEMENT: Enhancing metabotropic glutamate receptor subtype 5 (mGlu5) activity is a promising strategy to treat cognitive and positive symptoms in schizophrenia. It is increasingly evident that positive allosteric modulators (PAMs) of mGlu5 are not all equal in preclinical models; there remains a need to better understand the molecular pharmacological properties of mGlu5 PAMs. This study reports detailed characterization of the binding and functional pharmacological properties of mGlu5 PAMs and is the first study of the effects of mGlu5 PAMs on receptor internalization.
Collapse
Affiliation(s)
- Angela Arsova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Thor C Møller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Shane D Hellyer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Line Vedel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Simon R Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Jakob L Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Karen J Gregory
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| |
Collapse
|
4
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
5
|
Salmaso V, Jacobson KA. Purinergic Signaling: Impact of GPCR Structures on Rational Drug Design. ChemMedChem 2020; 15:1958-1973. [PMID: 32803849 PMCID: PMC8276773 DOI: 10.1002/cmdc.202000465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 12/16/2022]
Abstract
The purinergic signaling system includes membrane-bound receptors for extracellular purines and pyrimidines, and enzymes/transporters that regulate receptor activation by endogenous agonists. Receptors include: adenosine (A1 , A2A , A2B, and A3 ) and P2Y (P2Y1 , P2Y2 , P2Y4 , P2Y6 , P2Y11 , P2Y12 , P2Y13 , and P2Y14 ) receptors (all GPCRs), as well as P2X receptors (ion channels). Receptor activation, especially accompanying physiological stress or damage, creates a temporal sequence of signaling to counteract this stress and either mobilize (P2Rs) or suppress (ARs) immune responses. Thus, modulation of this large signaling family has broad potential for treating chronic diseases. Experimentally determined structures represent each of the three receptor families. We focus on selective purinergic agonists (A1 , A3 ), antagonists (A3 , P2Y14 ), and allosteric modulators (P2Y1 , A3 ). Examples of applying structure-based design, including the rational modification of known ligands, are presented for antithrombotic P2Y1 R antagonists and anti-inflammatory P2Y14 R antagonists and A3 AR agonists. A3 AR agonists are a potential, nonaddictive treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Veronica Salmaso
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Doller D, Bespalov A, Miller R, Pietraszek M, Kalinichev M. A case study of foliglurax, the first clinical mGluR4 PAM for symptomatic treatment of Parkinson's disease: translational gaps or a failing industry innovation model? Expert Opin Investig Drugs 2020; 29:1323-1338. [PMID: 33074728 DOI: 10.1080/13543784.2020.1839047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Approximately 40% of Parkinson's disease (PD) patients that take mostly dopamine receptor agonists for motor fluctuations, experience the return of symptoms between regular doses. This is a phenomenon known as 'OFF periods.' Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGluR4) are a promising non-dopaminergic mechanism with potential to address the unmet need of patients suffering from OFF periods. Foliglurax is the first mGluR4 PAM that has advanced into clinical testing in PD patients. AREAS COVERED We summarize the chemistry, pharmacokinetics, and preclinical pharmacology of foliglurax. Translational PET imaging studies, clinical efficacy data, and a competitive landscape analysis of available therapies are presented to the readers. In this Perspective article, foliglurax is used as a case study to illustrate the inherent R&D challenges that companies face when developing drugs. These challenges include the delivery of drugs acting through novel mechanisms, long-term scientific investment, and commercial success and shorter-term positive financial returns. EXPERT OPINION Failure to meet the primary and secondary endpoints in a Phase 2 study led Lundbeck to discontinue the development of foliglurax. Understanding the evidence supporting compound progression into Phase 2 will enable the proper assessment of the therapeutic potential of mGluR4 PAMs.
Collapse
Affiliation(s)
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice , Heidelberg, Germany.,Valdman Institute of Pharmacology, Pavlov Medical University , St. Petersburg, Russia
| | - Rob Miller
- Ventral Stream Consulting LLC ., IL, USA
| | - Malgorzata Pietraszek
- Partnership for Assessment and Accreditation of Scientific Practice , Heidelberg, Germany
| | | |
Collapse
|