1
|
Wu M, Ma Y, Huang Y, Zhang X, Dong J, Sun D. An ultrasensitive electrochemical aptasensor based on zeolitic imidazolate framework-67 loading gold nanoparticles and horseradish peroxidase for detection of aflatoxin B1. Food Chem 2024; 456:140039. [PMID: 38906010 DOI: 10.1016/j.foodchem.2024.140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins and poses a high risk to human health. Highly sensitive and rapid detection is one of the most effective preventive measures to avoid potential hazards. Herein, an electrochemical aptasensor based on DNA nanotetrahedron and zeolitic imidazolate framework-67 loading gold nanoparticles, horseradish peroxidase, and aptamers was designed for the ultrasensitive detection of AFB1. The high specific surface area and large pore volume of zeolitic imidazolate framework-67 can increase the loading capacity and further improve the detection sensitivity of electrochemical aptasensors. DNA nanotetrahedron can enhance the capture ability of AFB1 with steady immobilization. The developed aptasensor showed good analytical performance for AFB1 detection, with a detection limit of 3.9 pg mL-1 and a wide linear range of 0.01-100 ng mL-1. The aptasensor detected AFB1 in corn samples with recovery rates ranging from 94.19%-105.77% and has potential for use in food safety monitoring.
Collapse
Affiliation(s)
- Maoqiang Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Ying Ma
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Yaru Huang
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiaohui Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jun Dong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
2
|
Zhang Y, Lv W, Kang Z, Guo A, Li J, Dai C, Zhang M, Gao S, Li S, Miao Z, Chen S, Feng X, Li Y, Chen P, Liu BF. Drip-Dry Strategy Assisted Blu-Ray Disc Biosensor for Fast Point of Care Testing. Anal Chem 2024. [PMID: 39269278 DOI: 10.1021/acs.analchem.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Discs and numerous other consumer products have been developed for point of care testing (POCT) to replace traditional large and expensive biochemical devices in certain scenarios. Herein, we propose a drip-dry strategy (2D strategy) assisted Blu-ray disc (BD) biosensor, termed BDB, for rapid and portable POCT within 30 min with the cost of a single test < $1. The platform utilizes the covered area formed by the deposition of the substance to be measured on the activated BD surface after the evaporation of water and realizes the quantitative detection of the target through the error readout of free disc quality diagnosis software. As a proof of concept, we first demonstrated the feasibility of direct quantitative detection of substances in solution in a single system through the detection of pure proteins avoiding colorimetric reagent used in traditional optical detection. For the complex mixed systems, we then innovatively utilize the principle that soluble targets promote/inhibit the dissolution of insoluble precipitates to achieve specific detection of targets and successfully apply BDB to the indirect quantitative detection of glutathione (GSH) with LOD of 0.447 mM in the range of 2-16 mM and organophosphorus pesticides (OPs) with LOD of 2.122 × 10-7 M in the range of 1.289 × 10-7-1.289 × 10-4 M. The BDB is widely applicable, easy to operate, and less time-consuming, which is anticipated to provide an alternative method for early, on-site detection or screening.
Collapse
Affiliation(s)
- Yunhao Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenjie Lv
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zixin Kang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anxin Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junming Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenxi Dai
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingyu Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyu Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sihan Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Ren M, Dong Y, Wang J, Lin J, Qu L, Zhou Y, Chen Y. Computer vision-assisted smartphone microscope imaging digital immunosensor based on click chemistry-mediated microsphere counting technology for the detection of aflatoxin B 1 in peanuts. Anal Chim Acta 2023; 1278:341687. [PMID: 37709427 DOI: 10.1016/j.aca.2023.341687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023]
Abstract
Aflatoxin B1 is a carcinogenic contaminant in food or feed, and it poses a serious health risk to humans. Herein, a computer vision-assisted smartphone microscope imaging digital (SMID) immunosensor based on the click chemistry-mediated microsphere counting technology was designed for the detection of aflatoxin B1 in peanuts. In this SMID immunosensor, the modified polystyrene (PS) microspheres were used as the signal probes and were recorded by a smartphone microscopic imaging system after immunoreaction and click chemistry reaction. The number of PS probes is adjusted by aflatoxin B1. The customized computer vision procedure was used to efficiently identify and count the obtained PS probes. This SMID immunosensor enables sensitive detection of aflatoxin B1 with a linear range from 0.001 ng/mL to 500 ng/mL, providing a simple, sensitive, and portable tool for food safety supervision.
Collapse
Affiliation(s)
- Meijie Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lijie Qu
- Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food of Hebei Province, Hebei North University, No. 11 South Diamond Road, Zhangjiakou, 075000, China
| | - Yang Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Kinnamon DS, Heggestad JT, Liu J, Chilkoti A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:123-149. [PMID: 35216530 PMCID: PMC10024863 DOI: 10.1146/annurev-anchem-061020-123817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
Collapse
Affiliation(s)
- David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jason Liu
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
5
|
Tang W, Qi Y, Li Z. A Portable, Cost-Effective and User-Friendly Instrument for Colorimetric Enzyme-Linked Immunosorbent Assay and Rapid Detection of Aflatoxin B 1. Foods 2021; 10:foods10102483. [PMID: 34681534 PMCID: PMC8535515 DOI: 10.3390/foods10102483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Food analysis based on the enzyme-linked immunosorbent assay (ELISA) is simple, sensitive and rapid, but requires a costly colorimetric instrument. The aim of this work was to develop a portable, low-cost and user-friendly colorimetric instrument for colorimetric ELISA and aflatoxin B1 (AFB1) detection. The principle of the developed instrument was employing a light-emitting diode to generate the signal light and using a light-dependent resistor to measure the signal light absorbed by the oxidized 3,3′,5,5′-tetramethyl benzidine. The absorption spectra revealed that the solution absorbed signal light more strongly after reaction with H2SO4, and blue light would be favorably absorbed. Evaluations on the stability and accuracy of the instrument and interference from ambient light showed that the fabricated instrument was stable, accurate, capable of quantitative detection and insensitive to ambient light changes. In addition, this instrument is user-friendly since it could calculate and report the final amount of AFB1 to the operator. Measurements of maize and peanuts showed that the instrument provided as accurate results as the professional equipment. With the low fabrication cost (about RMB 129 or USD 20), portability, and user-friendliness, this instrument presents attractive potential in the rapid detection of AFB1.
Collapse
|
6
|
Development of enzyme-free single-step immunoassays for glycocholic acid based on palladium nanoparticle-mediated signal generation. Anal Bioanal Chem 2021; 413:5733-5742. [PMID: 34476526 DOI: 10.1007/s00216-021-03548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Palladium nanoparticles (PdNPs) are composed mainly of inert noble metals, and their outstanding properties have attracted wide attention. PdNPs are not only capable of mimicking the oxidase-like characteristics of natural bio-enzymes, but they also present a clear black band in the test zone. In this work, the synthesized PdNPs promoted a transformation of colorless tetramethylbenzidine (TMB) to a blue oxidation product of TMB, providing a Km value of 0.09 mM for TMB, and revealing the good catalytic performance of the synthesized PdNPs. For both signal generation and amplification, PdNPs effectively replaced natural bio-enzymes as a new labeling tag. Thus, the PdNP-based enzyme-free single-step immunoassays were successfully developed for efficient and sensitive detection of glycocholic acid (GCA). Under optimal conditions, a noticeable linear relationship was identified by the enzyme-linked immunosorbent assay (ELISA) over a range of 8-2390 ng/mL, while the visual limit of detection (vLOD) in the constructed lateral flow immunoassay (LFA) was 10 ng/mL for GCA. The recovery rate in spiked urine samples obtained by the ELISA ranged from 84.2 to 117.9%, which was consistent with the results in LFA. The present work demonstrates the potential of PdNPs as labeling matrices in enzyme-free single-step immunoassays.
Collapse
|
7
|
Hou P, Deng R, Guo J, Chen W, Li X, Yu HZ. A WiFi scanner in conjunction with disposable multiplex paper assay for the quantitation of disease markers in blood plasma. Anal Bioanal Chem 2021; 413:4625-4634. [PMID: 33661349 DOI: 10.1007/s00216-021-03234-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
Herein we report a quantitative, multiplex assay for disease markers in plasma based on an integrated setup of a portable scanner and a disposable paper-based analytical device (PAD). The quantitative analysis relies on the digital colorimetric reading of the three-layer PAD with 30 assay sites for performing respective chromogenic reactions for plasma uric acid, glucose, and triglyceride, which are considered as important risk factors for cardiovascular diseases. A portable scanner with WiFi transmission capability was used to produce high-quality color images of the PADs and wirelessly transfer them to a smartphone or other mobile devices for data processing. The concentrations of biomarkers in both standard solutions and plasma samples can be directly obtained using a custom-designed smartphone app that is also capable of constructing calibration curves. The detection limits of uric acid, glucose, and triglyceride were determined to be 0.50 mg/dL, 0.84 mmol/L, and 14 mg/dL, respectively, which are below the normal limits and adequate for clinical validation. Owing to the distinct advantages-simple, portable, and cost-effective-this mobile assay protocol can be used for point-of-care (POC) settings or resource-limited situations, and potentially for the diagnosis and prevention of infectious diseases.
Collapse
Affiliation(s)
- Pengfei Hou
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030606, Shanxi, China
| | - Rong Deng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030606, Shanxi, China
| | - Jiqiang Guo
- Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030606, Shanxi, China
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030606, Shanxi, China.
| | - Hua-Zhong Yu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030606, Shanxi, China.
- Department of Chemistry and Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
8
|
Wang C, Liu L, Zhao Q. Low Temperature Greatly Enhancing Responses of Aptamer Electrochemical Sensor for Aflatoxin B1 Using Aptamer with Short Stem. ACS Sens 2020; 5:3246-3253. [PMID: 33052655 DOI: 10.1021/acssensors.0c01572] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aflatoxin B1 (AFB1), one of the most toxic mycotoxins, poses great health risks. Rapid and sensitive detection of AFB1 is important for food safety, environment monitoring, and health risk assessment. We report here the development of a simple and reusable electrochemical aptasensor for rapid and sensitive detection of AFB1. Main improvements were achieved through engineering an aptamer containing a short stem-loop structure and enhancing the binding affinity at a lower temperature. The DNA aptamer with a methylene blue (MB) label at one end was immobilized on a gold electrode. Upon AFB1 binding, the aptamer folded into a stem-loop structure and brought MB close to the electrode surface, resulting in increases in electric current. The aptamer having a shorter stem (2-4 bp) underwent a larger conformation change upon target binding. The sensors built with the aptamer containing a 2 bp stem generated much higher signal-on responses to AFB1 at 4 °C than at room temperature (25 °C). The improvements resulted in a detection limit of 6 pM, enabling the determination of trace AFB1 in a complex sample matrix. This study demonstrates that low temperature greatly enhances the performance of aptamer electrochemical sensors. This aptasensor is simple to construct and readily regenerated by washing with deionized water for reuse. This aptasensor strategy could be applied to the development of an electrochemical aptasensor for other targets.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|