1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Haque A, Alenezi KM, Alsukaibi AKD, Al-Otaibi AA, Wong WY. Water-Soluble Small Organic Fluorophores for Oncological Theragnostic Applications: Progress and Development. Top Curr Chem (Cham) 2024; 382:14. [PMID: 38671325 DOI: 10.1007/s41061-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Cancer is one of the major noncommunicable diseases, responsible for millions of deaths every year worldwide. Though various cancer detection and treatment modalities are available today, many deaths occur owing to its late-stage detection and metastatic nature. Noninvasive detection using luminescence-based imaging tools is considered one of the promising techniques owing to its low cost, high sensitivity, and brightness. Moreover, these tools are unique and valuable as they can detect even the slightest changes in the cellular microenvironment. To achieve this, a fluorescent probe with strong tumor uptake and high spatial and temporal resolution, especially with high water solubility, is highly demanded. Recently, several water-soluble molecules with emission windows in the visible (400-700 nm), first near-infrared (NIR-I, 700-1000 nm), and second near-infrared (NIR-II, 1000-1700 nm) windows have been reported in literature. This review highlights recently reported water-soluble small organic fluorophores/dyes with applications in cancer diagnosis and therapeutics. We systematically highlight and describe the key concepts, structural classes of fluorophores, strategies for imparting water solubility, and applications in cancer therapy and diagnosis, i.e., theragnostics. We discuss examples of water-soluble fluorescent probes based on coumarin, xanthene, boron-dipyrromethene (BODIPY), and cyanine cores. Some other emerging classes of dyes based on carbocyclic and heterocyclic cores are also discussed. Besides, emerging molecular engineering methods to obtain such fluorophores are discussed. Finally, the opportunities and challenges in this research area are also delineated.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Ahmed A Al-Otaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
3
|
Ji X, Wang N, Wang J, Wang T, Huang X, Hao H. Non-destructive real-time monitoring and investigation of the self-assembly process using fluorescent probes. Chem Sci 2024; 15:3800-3830. [PMID: 38487216 PMCID: PMC10935763 DOI: 10.1039/d3sc06527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Self-assembly has been considered as a strategy to construct superstructures with specific functions, which has been widely used in many different fields, such as bionics, catalysis, and pharmacology. A detailed and in-depth analysis of the self-assembly mechanism is beneficial for directionally and accurately regulating the self-assembly process of substances. Fluorescent probes exhibit unique advantages of sensitivity, non-destructiveness, and real-time self-assembly tracking, compared with traditional methods. In this work, the design principle of fluorescent probes with different functions and their applications for the detection of thermodynamic and kinetic parameters during the self-assembly process were systematically reviewed. Their efficiency, limitations and advantages are also discussed. Furthermore, the promising perspectives of fluorescent probes for investigating the self-assembly process are also discussed and suggested.
Collapse
Affiliation(s)
- Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| |
Collapse
|
4
|
Zhang W, Fan W, Wang X, Li P, Zhang W, Wang H, Tang B. Uncovering Endoplasmic Reticulum Superoxide Regulating Hepatic Ischemia-Reperfusion Injury by Dynamic Reversible Fluorescence Imaging. Anal Chem 2023; 95:8367-8375. [PMID: 37200499 DOI: 10.1021/acs.analchem.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a relatively common complication of liver resection and transplantation that is intimately connected to oxidative stress. The superoxide anion radical (O2•-), as the first reactive oxygen species produced by organisms, is an important marker of HIRI. The endoplasmic reticulum (ER) is an essential site for O2•- production, especially ER oxidative stress, which is closely linked to HIRI. Thus, dynamic variations in ER O2•- may accurately indicate the HIRI extent. However, there is still a lack of tools for the dynamic reversible detection of ER O2•-. Therefore, we designed and prepared an ER-targeted fluorescent reversible probe DPC for real-time tracing of O2•- fluctuations. We successfully observed a marked increase in ER O2•- levels in HIRI mice. A potential NADPH oxidase 4-ER O2•--SERCA2b-caspase 4 signaling pathway in HIRI mice was also revealed. Attractively, DPC was successfully used for precise fluorescent navigation and excision of HIRI sites.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wenjie Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
5
|
Chang H, Mei Y, Li Y, Shang L. An AIE and ESIPT based neuraminidase fluorescent probe for influenza virus detection and imaging. Talanta 2022; 247:123583. [DOI: 10.1016/j.talanta.2022.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
|
6
|
Hou XF, Zhang S, Chen X, Bisoyi HK, Xu T, Liu J, Chen D, Chen XM, Li Q. Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22443-22453. [PMID: 35513893 DOI: 10.1021/acsami.2c02851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Artificial supramolecular light-harvesting systems have expanded various properties on photoluminescence, enabling promising applications on cell imaging, especially for imaging in organelles. Supramolecular light-harvesting systems have been used for imaging in some organelles such as lysosome, Golgi apparatus, and mitochondrion, but developing a supramolecular light-harvesting platform for imaging two organelles synchronously still remains a great challenge. Here, we report a series of lower-rim dodecyl-modified sulfonato-calix[4]arene-mediated supramolecular light-harvesting platforms for efficient light-harvesting from three naphthalene diphenylvinylpyridiniums containing acceptors, Nile Red, and Nile Blue. All of the constructed supramolecular light-harvesting systems possess high light-harvesting efficiency. Furthermore, when the two acceptors are loaded simultaneously in a single light-harvesting donor system for imaging in human prostate cancer cells, organelle imaging in lysosome and Golgi apparatus can be realized at the same time with distinctive wavelength emission. Nile Red receives the light-harvesting energy from the donors, reaching orange emissions (625 nm) in lysosome while Nile Blue shows a near-infrared light-harvesting emission at 675 nm in Golgi apparatus in the same cells. Thus, the light harvesting system provides a pathway for synchronously efficient cell imaging in two distinct organelles with a single type of photoluminescent supramolecular nanoparticles.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu Zhang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiao Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Tianchi Xu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiang Liu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
7
|
Chen S, Wang L, Zhou S, He X, Wu Y, Hou S, Ma X. A susceptible multifunctional fluorescent probe based on levulinic acid for the practical detection of SO 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1529-1533. [PMID: 35357378 DOI: 10.1039/d2ay00263a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfites (HSO3-) are used as preservatives and additives in many foods and medicines. However, a high sulfite concentration can cause asthma attacks and even breathing difficulties. Sulfites can also accumulate from the environment into the body, so it is necessary to develop a probe capable of detecting SO2 in the environment and in organisms. A multifunctional sensor, SO-2, based on levulinic acid was designed and synthesized. SO-2 showed an excellent response to SO2 with a detection limit of 2.0 × 10-8 M and a fast response equilibrium time (within 10 min), which indicated that the probe could detect SO2 with high sensitivity. The probe also successfully traced exogenous bisulfite in cells and was applied to analyze water samples in a natural environment.
Collapse
Affiliation(s)
- Shijun Chen
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, P. R. China.
| | - Lin Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shunchao Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, P. R. China.
| | - Xie He
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, P. R. China.
| | - Yuanyuan Wu
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shicong Hou
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, P. R. China.
| | - Xiaodong Ma
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
8
|
Feng J, Shen W, Mou Y, Zhou Z, Li Y, Han W, Li B. Fluorescent probes based on oxonium-coumarin scaffold for the detection of SO 2 derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj02967g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a pair of fluorescent probes CPO were designed for the detection of SO2 derivatives based on the FRET principle. The acceptor part of the probe CPO is...
Collapse
|
9
|
De Santis I, Zanoni M, Arienti C, Bevilacqua A, Tesei A. Density Distribution Maps: A Novel Tool for Subcellular Distribution Analysis and Quantitative Biomedical Imaging. SENSORS 2021; 21:s21031009. [PMID: 33540807 PMCID: PMC7867329 DOI: 10.3390/s21031009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/14/2023]
Abstract
Subcellular spatial location is an essential descriptor of molecules biological function. Presently, super-resolution microscopy techniques enable quantification of subcellular objects distribution in fluorescence images, but they rely on instrumentation, tools and expertise not constituting a default for most of laboratories. We propose a method that allows resolving subcellular structures location by reinforcing each single pixel position with the information from surroundings. Although designed for entry-level laboratory equipment with common resolution powers, our method is independent from imaging device resolution, and thus can benefit also super-resolution microscopy. The approach permits to generate density distribution maps (DDMs) informative of both objects’ absolute location and self-relative displacement, thus practically reducing location uncertainty and increasing the accuracy of signal mapping. This work proves the capability of the DDMs to: (a) improve the informativeness of spatial distributions; (b) empower subcellular molecules distributions analysis; (c) extend their applicability beyond mere spatial object mapping. Finally, the possibility of enhancing or even disclosing latent distributions can concretely speed-up routine, large-scale and follow-up experiments, besides representing a benefit for all spatial distribution studies, independently of the image acquisition resolution. DDMaker, a Software endowed with a user-friendly Graphical User Interface (GUI), is also provided to support users in DDMs creation.
Collapse
Affiliation(s)
- Ilaria De Santis
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, I-40138 Bologna, Italy;
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, I-40126 Bologna, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, I-47014 Meldola, Italy; (M.Z.); (C.A.); (A.T.)
| | - Chiara Arienti
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, I-47014 Meldola, Italy; (M.Z.); (C.A.); (A.T.)
| | - Alessandro Bevilacqua
- Advanced Research Center on Electronic Systems (ARCES) for Information and Communication Technologies “E. De Castro”, University of Bologna, I-40125 Bologna, Italy
- Department of Computer Science and Engineering (DISI), University of Bologna, I-40136 Bologna, Italy
- Correspondence: ; Tel.: +39-051-20-9-5409
| | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, I-47014 Meldola, Italy; (M.Z.); (C.A.); (A.T.)
| |
Collapse
|
10
|
Shi Z, Han X, Hu W, Bai H, Peng B, Ji L, Fan Q, Li L, Huang W. Bioapplications of small molecule Aza-BODIPY: from rational structural design to in vivo investigations. Chem Soc Rev 2020; 49:7533-7567. [DOI: 10.1039/d0cs00234h] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the empirical design guidelines and photophysical property manipulation of Aza-BODIPY dyes and the latest advances in their bioapplications.
Collapse
Affiliation(s)
- Zhenxiong Shi
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Xu Han
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- P. R. China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| |
Collapse
|