1
|
Su Y, Xu Z, Wang J, Qian J, Liu C, Shi J, Liu W, An X, Qin W, Liu Y. Design and synthesis of esterase-activated fluorescent probe for diagnosis and surgical guidance of liver cancer. Talanta 2025; 283:127210. [PMID: 39541716 DOI: 10.1016/j.talanta.2024.127210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Liver cancer seriously threatens the health of human beings. Studies have found that esterase is overexpressed in liver cancer cells. Therefore, esterase can be one of the biomarkers of liver cancer. Previous literature studies have shown that the structures of fluorescent probe detection groups significantly impact the probes themselves and enzyme detection. In this paper, three "off-on" esterase-activated fluorescent probes (RHO-1, RHO-2 and RHO-3) with different length of the carbon chains of the detection groups were designed and synthesized. Density functional theory (DFT) calculation and Michaelis-Menten equations were applied to study the optical properties and affinity with esterase of the probes. Compared with RHO-1 and RHO-2, RHO-3 showed superior optical properties and affinity with esterase. Subsequently, RHO-3 was further used to detect esterase activity in vitro and in vivo. RHO-3 was the first esterase-activated fluorescent probe applied to image-guided diagnosis and surgical resection of liver cancer. It was expected to be a promising molecular imaging diagnostic tool in clinical applications.
Collapse
Affiliation(s)
- Yaling Su
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhongsheng Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jiemin Wang
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, PR China
| | - Jing Qian
- School of Pharmacy and Medical Technology, Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province, Putian University, Putian, 351100, PR China
| | - Cong Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Junqi Shi
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Wei Liu
- The School of Chemistry & Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Xiaoli An
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, 810016, PR China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
2
|
P. K, Bhattacharya A, Du L, Silswal A, Li M, Cao J, Zhou Q, Zheng W, Liu TM, Koner AL. Activity-Based Dicyanoisophorone Derivatives: Fluorogenic Toolbox Enables Direct Visualization and Monitoring of Esterase Activity in Tumor Models. Anal Chem 2024; 96:18278-18286. [PMID: 39483052 PMCID: PMC11561878 DOI: 10.1021/acs.analchem.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The visualization and spatiotemporal monitoring of endogenous esterase activity are crucial for clinical diagnostics and treatment of liver diseases. Our research adopts a novel substrate hydrolysis-enzymatic activity (SHEA) approach using dicyanoisophorone-based fluorogenic ester substrates DCIP-R (R = R1-R6) to evaluate esterase preferences on diverse substrate libraries. Esterase-mediated hydrolysis yielded fluorescent DCIP-OH with a nanomolar detection limit in vitro. These probes effectively monitor ester hydrolysis kinetics with a turnover number of 4.73 s-1 and catalytic efficiency (kcat/Km) of 106 M-1 s-1 (DCIP-R1). Comparative studies utilizing two-photon imaging have indicated that substrates containing alkyl groups (DCIP-R1) as recognition elements exhibit enhanced enzymatic cleavage compared to those containing phenyl substitution on alkyl chains (DCIP-R4). Time-dependent variations in endogenous esterase levels were tracked in healthy and liver tumor models, especially in diethylnitrosamine (DEN)-induced tumors and HepG2-transplanted liver tumors. Overall, fluorescence signal quantifications demonstrated the excellent proficiency of DCIP-R1 in detecting esterase activity both in vitro and in vivo, showing promising potential for biomedical applications.
Collapse
Affiliation(s)
- Kavyashree P.
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Atri Bhattacharya
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States of
America
| | - Lidong Du
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Akshay Silswal
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Moxin Li
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Jiayue Cao
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Qingqing Zhou
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Weiming Zheng
- Translational
Medicine R&D Center, Zhuhai UM Science
and Technology Research Institute, Zhuhai 519000, China
| | - Tzu-Ming Liu
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Apurba Lal Koner
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| |
Collapse
|
3
|
Wang K, Wang R, Yan Z, Li Y, Shi Y, Ge JY, Bai Y, Chen Z, Zhang L. Rational Design of a Highly Sensitive Carboxylesterase Probe and Its Application in High-Throughput Screening for Uncovering Carboxylesterase Inhibitors. J Org Chem 2024; 89:14650-14657. [PMID: 38720168 DOI: 10.1021/acs.joc.4c00699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tracking carboxylesterases (CESs) through noninvasive and dynamic imaging is of great significance for diagnosing and treating CES-related metabolic diseases. Herein, three BODIPY-based fluorescent probes with a pyridine unit quaternarized via an acetoxybenzyl group were designed and synthesized to detect CESs based on the photoinduced electron transfer process. Notably, among these probes, BDPN2-CES exhibited a remarkable 182-fold fluorescence enhancement for CESs within 10 min. Moreover, BDPN2-CES successfully enabled real-time imaging of endogenous CES variations in living cells. Using BDPN2-CES, a visual high-throughput screening method for CES inhibitors was established, culminating in the discovery of an efficient inhibitor, WZU-13, sourced from a chemical library. These findings suggest that BDPN2-CES could provide a new avenue for diagnosing CES-related diseases, and WZU-13 emerges as a promising therapeutic candidate for CES-overexpression pathological processes.
Collapse
Affiliation(s)
- Kexin Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ruoxi Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zihui Yan
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yi Li
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yangchen Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| | - Lei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P. R. China
| |
Collapse
|
4
|
Li JM, Liu YZ, Lv XF, Zhou DH, Zhang H, Chen YJ, Li K. Construction of a novel aminofluorene-based ratiometric near-infrared fluorescence probe for detecting carboxylesterase activity in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3641-3645. [PMID: 38812419 DOI: 10.1039/d4ay00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Herein, we constructed a novel aminofluorene-based fluorescence probe (FEN-CE) for the detection of carboxylesterase (CE) in living cells by a ratiometric near-infrared (NIR) fluorescence signal. FEN-CE with NIR emission (650 nm) could be hydrolyzed specifically by CE and transformed to FENH with the release of the self-immolative group, which exhibited a red-shifted emission peak of 680 nm. In addition, FEN-CE showed high selectivity for CE and was successfully used in the detection of CE activity in living cells through its ratiometric NIR fluorescence signals.
Collapse
Affiliation(s)
- Jun-Mei Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xiao-Fang Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Ding-Heng Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yu-Jin Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
5
|
Zhao H, Guo J, Huai J, Li R, Han H, Huang X, Jiang Y, Shuang S. A novel pH-sensitive hemi-cyanine containing tetrahydropyridine ring near-infrared fluorescence probe with lysosome-targeting ability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124162. [PMID: 38522377 DOI: 10.1016/j.saa.2024.124162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
In recent years, hemi-cyanine dyes have been widely used as biological probes due to their red-light emission characteristics and high fluorescence quantum yield. In this study, we synthesized a novel hemi-cyanine dye containing a tetrahydropyridine ring. A lysosomal target was introduced into its structure to create a new pH-sensitive near-infrared fluorescent probe that successfully targeted lysosomes. The results showed that when the probe solution was excited at the absorption wavelength of 650 nm, its fluorescence emission wavelength was about 700 nm, and the peak intensity changed with different pH values in a wide range. Therefore, this probe enabled non-invasive detection of changes in the acidic environment of lysosomes in living organisms and showed good imaging capabilities. Moreover, the probe displays high sensitivity and good stability. The theoretical calculation of a probe structure has also been completed to discuss the relationship between structure and property.
Collapse
Affiliation(s)
- Hongwei Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Jingrong Guo
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Jiameng Huai
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ruyue Li
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Hui Han
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Xiao Huang
- Shanxi Science and Technology Resources and Large-Scale Instrument Open-Sharing Center, Taiyuan, 03006, China
| | - Yuna Jiang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
6
|
Iqbal H, Ilyas K, Akash MSH, Rehman K, Hussain A, Iqbal J. Real-time fluorescent monitoring of phase I xenobiotic-metabolizing enzymes. RSC Adv 2024; 14:8837-8870. [PMID: 38495994 PMCID: PMC10941266 DOI: 10.1039/d4ra00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara Okara Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22044 Pakistan
| |
Collapse
|
7
|
Zhang W, Qi C, Wang X, Fu Z, Zhang J, Zhou Y, Wang Y. An ultrasensitive and selective near-infrared fluorescent probe for tracking carboxylesterases with large Stokes shift in living cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123708. [PMID: 38042124 DOI: 10.1016/j.saa.2023.123708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Carboxylesterases (CEs) play great role in CEs-related diseases and drug metabolism. Selectively monitoring its activity is important to explore its role in CEs-related diseases and drug combination. Herein, a new "turn-on" near-infrared (NIR) fluorescent probe (CHY-1) was reported with large Stokes shift (145 nm) for CEs detection. Dicyanoisophorone-based derivative was chosen as NIR fluorophore and 4-bromobutyrate was the identifying group. What's more, CHY-1 exhibited ultra-sensitivity (LOD ∼ 9.2 × 10-5 U/mL), high selectivity against Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE) and Chymotrypsin for CEs fluorescence detection under physiological pH and temperature. Furthermore, CHY-1 showed little effect on cell viability at high concentration and featured good optical imaging character for the slight change of CEs activity induced by 5-Fu (5-Fluorouridine, anti-tumor drug) and CEs inhibitor in living cells. Moreover, CHY-1 was also used to detect the activity and distribution of CEs in mice. Taken together, CHY-1 had widely applicable value in the diagnosis of CEs-related diseases and drug combination.
Collapse
Affiliation(s)
- Wenda Zhang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Chongzhen Qi
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xinru Wang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Zhe Fu
- Department of General Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yubing Zhou
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Yu Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
8
|
Yang B, Ding X, Zhang Z, Li J, Fan S, Lai J, Su R, Wang X, Wang B. Visualization of production and remediation of acetaminophen-induced liver injury by a carboxylesterase-2 enzyme-activatable near-infrared fluorescent probe. Talanta 2024; 269:125418. [PMID: 37988783 DOI: 10.1016/j.talanta.2023.125418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Acetaminophen (APAP) overdose, also known as APAP poisoning, may directly result in hepatic injury, acute liver failure and even death. Nowadays, APAP-induced liver injury (AILI) has become an urgent public health issue in the developing world so the early accurate diagnosis and the revelation of underlying molecular mechanism of AILI are of great significance. As a major detoxifying organ, liver is responsible for metabolizing chemical substances, in which human carboxylesterase-2 (CES2) is present. Hence, we chose CES2 as an effective biomarker for evaluating AILI. By developing a CES2-activatable and water-soluble fluorescent probe PFQ-E with superior affinity (Km = 5.9 μM), great sensitivity (limit of detection = 1.05 ng/mL), near-infrared emission (655 nm) and large Stokes shift (135 nm), activity and distribution of CES2 in cells were determined or imaged effectively. More importantly, the APAP-induced hepatotoxicity and the underlying molecular mechanism of pathogenesis of AILI were investigated by measuring the "light-up" response of PFQ-E towards endogenous CES2 in vivo for the first time. Based on the superior performance of the probe PFQ-E for sensing CES2, we believe that it has broad potential in clinical diagnosis and therapy response evaluation of AILI.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China; College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangdong Ding
- China-Japan Union Hospital, Jilin University, Changchun, 130012, China
| | - Zhimin Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shengyu Fan
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jinyu Lai
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Rui Su
- College of Chemistry, Jilin University, Changchun, 130012, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Bo Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China; College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Li X, Zang L, Zhao H, Qi F, Lau C, Lu J. Modulation of Near-Infrared Mitochondria-Targetable fluorescent probe for H 2S bioimaging through the modification of heavy atom iodine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122767. [PMID: 37120951 DOI: 10.1016/j.saa.2023.122767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
H2S is correlated with mitochondrial dysfunction, which results in the death of cells. Two near-infrared fluorescent probes, Mito-HS-1 and Mito-HS-2, were designed for mitochondrial H2S imaging. Initially, the synthesis protocol of expensive IR-780-based hemicyanine (HXPI) was optimized with an appreciate yield of 80 % as compared with 14-56 % previously reported. Iodine atom was introduced to HXPI to obtain iodine-HXPI whose Stokes shift was increased to be 90 nm. On account of the rapid and fast nucleophilic attack of H2S, HXPI-based Mito-HS-1 could be applied for the real time imaging of mitochondrial H2S. Besides some similar optical properties with Mito-HS-1, iodine-HXPI-based Mito-HS-2 exhibited wider linear range (3-150 μM), more stable fluorescent imaging and more favorable specificity in vitro. Both Mito-HS-1 and Mito-HS-2 could be used to image exogenous H2S in cells, with Mito-HS-2 showing fairly better signal-to-noise. Additionally, the Pearson correlation coefficient of two probes demonstrated that they could successfully monitor mitochondrial H2S in A549 cells and Hela cells.
Collapse
Affiliation(s)
- Xuewei Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Liu Zang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hanqing Zhao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Fenghui Qi
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Choiwan Lau
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
10
|
Gil-Rivas A, de Pascual-Teresa B, Ortín I, Ramos A. New Advances in the Exploration of Esterases with PET and Fluorescent Probes. Molecules 2023; 28:6265. [PMID: 37687094 PMCID: PMC10488407 DOI: 10.3390/molecules28176265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Esterases are hydrolases that catalyze the hydrolysis of esters into the corresponding acids and alcohols. The development of fluorescent probes for detecting esterases is of great importance due to their wide spectrum of biological and industrial applications. These probes can provide a rapid and sensitive method for detecting the presence and activity of esterases in various samples, including biological fluids, food products, and environmental samples. Fluorescent probes can also be used for monitoring the effects of drugs and environmental toxins on esterase activity, as well as to study the functions and mechanisms of these enzymes in several biological systems. Additionally, fluorescent probes can be designed to selectively target specific types of esterases, such as those found in pathogenic bacteria or cancer cells. In this review, we summarize the recent fluorescent probes described for the visualization of cell viability and some applications for in vivo imaging. On the other hand, positron emission tomography (PET) is a nuclear-based molecular imaging modality of great value for studying the activity of enzymes in vivo. We provide some examples of PET probes for imaging acetylcholinesterases and butyrylcholinesterases in the brain, which are valuable tools for diagnosing dementia and monitoring the effects of anticholinergic drugs on the central nervous system.
Collapse
Affiliation(s)
- Alba Gil-Rivas
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| |
Collapse
|
11
|
Braddick HJ, Tipping WJ, Wilson LT, Jaconelli HS, Grant EK, Faulds K, Graham D, Tomkinson NCO. Determination of Intracellular Esterase Activity Using Ratiometric Raman Sensing and Spectral Phasor Analysis. Anal Chem 2023; 95:5369-5376. [PMID: 36926851 PMCID: PMC10061367 DOI: 10.1021/acs.analchem.2c05708] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Carboxylesterases (CEs) are a class of enzymes that catalyze the hydrolysis of esters in a variety of endogenous and exogenous molecules. CEs play an important role in drug metabolism, in the onset and progression of disease, and can be harnessed for prodrug activation strategies. As such, the regulation of CEs is an important clinical and pharmaceutical consideration. Here, we report the first ratiometric sensor for CE activity using Raman spectroscopy based on a bisarylbutadiyne scaffold. The sensor was shown to be highly sensitive and specific for CE detection and had low cellular cytotoxicity. In hepatocyte cells, the ratiometric detection of esterase activity was possible, and the result was validated by multimodal imaging with standard viability stains used for fluorescence microscopy within the same cell population. In addition, we show that the detection of localized ultraviolet damage in a mixed cell population was possible using stimulated Raman scattering microscopy coupled with spectral phasor analysis. This sensor demonstrates the practical advantages of low molecular weight sensors that are detected using ratiometric Raman imaging and will have applications in drug discovery and biomedical research.
Collapse
Affiliation(s)
- Henry J Braddick
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - William J Tipping
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Liam T Wilson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Harry S Jaconelli
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Emma K Grant
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
12
|
Wen Y, Jing N, Zhang M, Huo F, Li Z, Yin C. A Space-Dependent 'Enzyme-Substrate' Type Probe based on 'Carboxylesterase-Amide Group' for Ultrafast Fluorescent Imaging Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206681. [PMID: 36651112 PMCID: PMC10015879 DOI: 10.1002/advs.202206681] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Indexed: 05/14/2023]
Abstract
Fast and selective fluorescence imaging for a biomarker to related-disease diagnosis remains a significant challenge due to complex physical environment. Human carboxylesterase (CE) is expected to be a potential biomarker of hepatocellular carcinoma (HCC) to improve the accuracy of diagnosis. However, existing probes for CE has slow response rate and low selectivity. Herein, the amide group is selected as CE-responsive sites based on the "substrate-hydrolysis enzymatic reaction" approach. From a series of off-on probes with leave groups in the amide unit, probe JFast is screened with the optimal combination of rapid response rate and high selectivity toward CE. JFast requires only 150 s to reach the maximum fluorescence at 676 nm in the presence of CE and free from the interference of other esterase. Computational docking simulations indicate the shortest distance between the CE and active site of JFast . Cell and in vivo imaging present that the probe can turn on the liver cancer cells and tumor region precisely. Importantly, JFast is allowed to specifically image orthotopic liver tumor rather than metastatic tumor and distinguish human primary liver cancer tissue from adjacent ones. This study provides a new tool for CE detection and promotes advancements in accurate HCC diagnosis.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| | - Ning Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| | - Min Zhang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Fangjun Huo
- Research Institute of Applied ChemistryShanxi UniversityTaiyuan030006China
| | - Zhuoyu Li
- Institute of BiotechnologyKey Laboratory of Chemical Biology and Molecular Engineering of National Ministry of EducationShanxi UniversityTaiyuan030006China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| |
Collapse
|
13
|
Chen Z, Yu J, Sun K, Song J, Chen L, Jiang Y, Wang Z. Rational design of a turn-on near-infrared fluorescence probe for the highly sensitive and selective monitoring of carboxylesterase 2 in living systems. Analyst 2023; 148:876-887. [PMID: 36661088 DOI: 10.1039/d2an01874h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In vivo selective fluorescence imaging of carboxylesterase 2 (CES2) remains a great challenge because existing fluorescence probes can potentially suffer from interference by other hydrolases. In addition, some fluorescent probes that have been separately reported for measuring CES2 activity in vitro are affected by autofluorescence and absorption of the biological matrix due to their limited emission wavelength or short Stokes shift. Herein, based on the substrate preference and catalytic performance of CES2, a novel and NIR fluorescent probe was developed, in which a hemi-cyanine dye ester derivative was used as the basic fluorescent group. In the presence of CES2, the probe was hydrolyzed to expose the fluorophore CZX-OH (λabs ∼ 675 nm, λem ∼ 850 nm), which led to a notable red-shift in the fluorescence (∼175 nm) spectrum. Confocal imaging of cells and live mice demonstrated that the fluorescent signal of this probe was related to the real activities of CES2 in cancer cells. All these results will powerfully promote the screening of CES2 regulators and the analysis of CES2-related physiological and pathological processes.
Collapse
Affiliation(s)
- Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Lucheng Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
14
|
Fan XP, Huang J, Ren TB, Yuan L, Zhang XB. De Novo Design of Activatable Photoacoustic/Fluorescent Probes for Imaging Acute Lung Injury In Vivo. Anal Chem 2023; 95:1566-1573. [PMID: 36584357 DOI: 10.1021/acs.analchem.2c04642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective monitoring of the physiological progression of acute lung injury (ALI) in real time is crucial for early theranostics to reduce its high mortality. In particular, activatable fluorescence and photoacoustic molecule probes have attracted attention to assess ALI by detecting related indicators. However, the existing fluorophores often encounter issues of low retention in the lungs and slow clearance from the body, which compromise the probe's actual capability for in situ imaging by intravenous injection in vivo. Herein, a novel near-infrared hemicyanines fluorophore (FJH) bearing a quaternary ammonium group was first developed by combining with the rational design and screening strategy. The properties of good hydrophilicity and blood circulation effectively enable FJH accumulation for lung imaging. Inspired by the high retention efficiency, the probe FJH-C that turns on fluorescence and photoacoustic signals in response to the ALI indicator (esterase) was subsequently synthesized. Notably, the probe FJH-C successfully achieved the selectivity and sensitivity toward esterase in vitro and in living cells. More importantly, FJH-C can be further used to assess lipopolysaccharides and silica-induced ALI through the desired fluo-photoacoustic signal. Therefore, this study not only shows the first activatable probe for real-time imaging of lung function but also highlights the fluorophore structure with high lung retention. It is believed that FJH and FJH-C can serve as an efficient platform to reveal the pathological progression of other lung diseases for early diagnosis and medical intervention.
Collapse
Affiliation(s)
- Xiao-Peng Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Li L, Zhang Q, Li J, Tian Y, Li J, Liu W, Diao H. A carboxylesterase-activatable near-infrared phototheranostic probe for tumor fluorescence imaging and photodynamic therapy. RSC Adv 2022; 12:35477-35483. [PMID: 36540215 PMCID: PMC9743415 DOI: 10.1039/d2ra06929f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 04/25/2024] Open
Abstract
Phototheranostic probes have been proven to be a promising option for cancer diagnosis and treatment. However, near-infrared phototheranostic probes with specific tumor microenvironment responsiveness are still in demand. In this paper, a carboxylesterase (CES)-responsive near-infrared phototheranostic probe was developed by incorporating 6-acetamidohexanoic acid into a hemicyanine dye through an ester bond. The probe exhibits highly sensitive and selective fluorescence enhancement towards CES because CES-catalyzed cleavage of the ester bond leads to the release of the fluorophore. By virtue of its near-infrared analytical wavelengths and high sensitivity, the probe has been employed for endogenous CES activatable fluorescence imaging of tumor cells. Moreover, under 660 nm laser irradiation, the probe can generate toxic reactive oxygen species and efficiently kill tumor cells, with low cytotoxicity in dark. As far as we know, the probe was the first CES-responsive phototheranostic probe with both near-infrared analytical wavelengths and photosensitive capacity, which may be useful in the real-time and in situ imaging of CES as well as imaging-guided photodynamic therapy of tumors. Therefore, the proposed probe may have wide application prospect in cancer theranostics.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 PR China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education PR China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 PR China
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 PR China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 PR China
| | - Jiaojiao Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 PR China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 PR China
| | - Yafei Tian
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 PR China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 PR China
| | - Jinyao Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 PR China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 PR China
| | - Wen Liu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education PR China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 PR China
| | - Haipeng Diao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 PR China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education PR China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 PR China
| |
Collapse
|
16
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
Yin Y, Kong X, Li M, Wang J, Dai X, Zhang Y, Lin W. Development of an esterase fluorescent probe based on naphthalimide-benzothiazole conjugation and its applications for qualitative detection of esterase in orlistat-treated biosamples. Anal Chim Acta 2022; 1190:339248. [PMID: 34857133 DOI: 10.1016/j.aca.2021.339248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
Esterase is a large hydrolysis family, and widely distributed in many kinds of cells. It is responsible for multiple physiological and pathological functions including metabolism, gene expression. While abnormality of esterase is associated with many pathological activities in obesity, Wolman's disease, and cancer. Thereby, it is essential to design an effective tool for esterase in situ detection in biological systems. Herein, a novel fluorescent probe Y-1 for monitoring esterase in living cells was rationally designed. Probe Y-1 was synthesized by the conjugation between an acetylation of 4-hydroxy naphthalimide and benzothiazole group. Benzothiazole moiety is a typical Excited-state intramolecular proton transfer (ESIPT) controller. Acetate group was selected as the responsive site and ESIPT initiator. As the acetate group could block the ESIPT effect, the probe emits no fluorescence under the excitation of 455 nm. When binding with esterase, Y-1 shows distinct fluorescence with the peak at 560 nm with short time when ESIPT is on. Y-1 displays high sensitivity (LOD is 0.216 × 10-3 U/mL), fast response (within 5 min), high selectivity and photostability towards esterase. Furthermore, the %RSD (relative standard deviation) of within-day and day-to-day precision was no more than 13.0% and the accuracy ranged from -6.5 to -12.3%. Kinetics performance of Y-1 indicates that esterase has high affinity and hydrolysis to Y-1. For biological applications, our probe is a time-dependent visualizing esterase in living HepG2 and CoLo205 cells within 15 min. After the treatment of orlistat (1 and 5 μM) for inhibiting the activity of esterase, the bright fluorescence has also been detected using our probe. Furthermore, it has been successful in monitoring the esterase in zebrafish, the data were consistent with cellular phenomena. Therefore, all these findings indicate that the robust probe Y-1 is a useful qualitative tool for detecting esterase in biological systems.
Collapse
Affiliation(s)
- Yaguang Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Min Li
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Jingchao Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiaoyu Dai
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Yunyan Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
18
|
Yu Z, Li X, Lu X, Guo Y. Rational construction of a novel probe for the rapid detection of butyrylcholinesterase stress changes in apoptotic cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj01678h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The occurrence of numerous neurodegenerative diseases is associated with abnormal levels of butyrylcholinesterase (BChE).
Collapse
Affiliation(s)
- Zhenqing Yu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
19
|
Guo WY, Fu YX, Liu SY, Mei LC, Sun Y, Yin J, Yang WC, Yang GF. Multienzyme-Targeted Fluorescent Probe as a Biosensing Platform for Broad Detection of Pesticide Residues. Anal Chem 2021; 93:7079-7085. [PMID: 33906355 DOI: 10.1021/acs.analchem.1c00553] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pesticide residues, significantly hampering the overall environmental and human health, have become an increasingly severe issue. Thus, developing rapid, cost-effective, and sensitive tools for monitoring the pesticide residues in food and water is extremely important. Compared to the conventional and chromatographic techniques, enzyme inhibition-based biosensors conjugated with the fluorogenic probes provide effective alternative methods for detecting pesticide residues due to the inherent advantages including high selectivity and sensitivity, simple operation, and capability of providing in situ and real-time information. However, the detection efficiency of a single enzyme-targeted biosensor in practical samples is strongly impeded by the structural diversity of pesticides and their distinct targets. In this work, we developed a strategy of multienzyme-targeted fluorescent probe design and accordingly obtained a novel fluorescent probe (named as 3CP) for detecting the presence of wide variety of pesticides. The designed probe 3CP, targeting cholinesterases, carboxylesterases, and chymotrypsin simultaneously, yielded intense fluorescence in the solid state upon the enzyme-catalyzed hydrolysis. It showed excellent sensitivity against organophosphorus and carbamate pesticides, and the detection limit for dichlorvos achieved 1.14 pg/L. Moreover, it allowed for the diffusion-resistant in situ visualization of pesticides in live cells and zebrafish and the sensitive measurement of organophosphorus pesticides in fresh vegetables, demonstrating the promising potential for tracking the pesticide residues in environment and biological systems.
Collapse
Affiliation(s)
- Wu-Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Long-Can Mei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|