1
|
Varghese S, Madanan AS, Abraham MK, Shkhair AI, Indongo G, Rajeevan G, K AB, George S. Impregnation of two-dimensional manganese dioxide nanosheets with 5-carboxyfluorescein as an immunoassay platform for sensitive detection of cardiac troponin T. Mikrochim Acta 2024; 191:651. [PMID: 39373729 DOI: 10.1007/s00604-024-06727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
A novel immunoassay platform is presented utilizing a cardiac troponin T antibody (Ab-cTnT) labelled with 5-carboxyfluorescein (5-FAM) integrated into a two-dimensional (2D) manganese dioxide nanosheet (MnO2 NS) matrix. This strategy enables a turn-on response towards cTnT antigen within a mere 10-min incubation period, boasting an impressive lower detection limit of 0.038 ng/mL. Crucially, our probe demonstrates exceptional selectivity amidst the presence of coexisting biomolecules and ions, ensuring precise detection of cTnT. Moreover, the developed platform showcases promising utility in sensing cTnT from spiked human serum samples, yielding satisfactory recovery percentages ranging from 82 to 105%. Additionally, we introduce and easy-to-use and cost-effective test strip for point-of-care detection of cTnT, further enhancing accessibility to critical cardiovascular diagnostics.
Collapse
Affiliation(s)
- Susan Varghese
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Anju S Madanan
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Merin K Abraham
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Geneva Indongo
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Greeshma Rajeevan
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Arathy B K
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Sony George
- Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
- International Inter University Centre for Sensing and Imaging (IIUCSI), University of Kerala, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
2
|
Doronin IV, Zyablovsky AA, Andrianov ES, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Balykin VI, Melentiev PN. Quantum engineering of the radiative properties of a nanoscale mesoscopic system. NANOSCALE 2024; 16:14899-14910. [PMID: 39040019 DOI: 10.1039/d4nr01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, etc. In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
Collapse
Affiliation(s)
- I V Doronin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - A A Zyablovsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia
| | - E S Andrianov
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Moscow, Russia
| | - A S Kalmykov
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - A S Gritchenko
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - S-P Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
- National Research University, Moscow, Russia.
| |
Collapse
|
3
|
Kudryavtsev DS, Mozhaeva VA, Ivanov IA, Siniavin AE, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Tsetlin VI, Balykin VI, Melentiev PN. Optical detection of infectious SARS-CoV-2 virions by counting spikes. NANOSCALE 2024; 16:12424-12430. [PMID: 38887059 DOI: 10.1039/d4nr01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Existing methods for the mass detection of viruses are limited to the registration of small amounts of a viral genome or specific protein markers. In spite of high sensitivity, the applied methods cannot distinguish between virulent viral particles and non-infectious viral particle debris. We report an approach to solve this long-standing challenge using the SARS-CoV-2 virus as an example. We show that wide-field optical microscopy with the state-of-the-art mesoscopic fluorescent labels, formed by a core-shell plasmonic nanoparticle with fluorescent dye molecules in the core-shell that are strongly coupled to the plasmonic nanoparticle, not only rapidly, i.e. in less than 20 minutes after sampling, detects SARS-CoV-2 virions directly in a patient sample without a pre-concentration step, but can also distinguish between infectious and non-infectious virus strains by counting the spikes on the lipid envelope of individual viral particles.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Vera A Mozhaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Andrey E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health, Moscow, 123098, Russia
| | | | | | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, 410049, Russia
| | - Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia.
- Higher School of Economics, National Research University, Moscow, 101000, Russia
| |
Collapse
|
4
|
Kim T, Kim S, Noh C, Hwang H, Shin J, Won N, Lee S, Kim D, Jang Y, Hong SJ, Park J, Kim SJ, Jang S, Lim KI, Jo K. Counting DNA molecules on a microchannel surface for quantitative analysis. Talanta 2023; 252:123826. [DOI: 10.1016/j.talanta.2022.123826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022]
|
5
|
Gritchenko AS, Kalmykov AS, Kulnitskiy BA, Vainer YG, Wang SP, Kang B, Melentiev PN, Balykin VI. Ultra-bright and narrow-band emission from Ag atomic sized nanoclusters in a self-assembled plasmonic resonator. NANOSCALE 2022; 14:9910-9917. [PMID: 35781487 DOI: 10.1039/d2nr01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have proposed, implemented and investigated a novel, efficient quantum emitter based on an atomic-sized Ag nanocluster in a plasmonic resonator. The quantum emitter enables the realization of: (1) ultra-bright fluorescence, (2) narrow-band emission down to 4 nm, (3) ultra-short fluorescence lifetime. The fluorescence cross-section of a quantum emitter is on the order of σ ∼ 10-14 cm2, which is comparable to the largest fluorescence cross-sections of dye molecules and quantum dots, and enables a light source with a record high intensity known only for plasmon nanolasers. The results presented suggest a unique method for fabricating nanoprobes with high brightness and wavelength-tunable spectrally narrow fluorescence, which is needed for multiplex diagnostics and detection of substances at extremely low concentrations.
Collapse
Affiliation(s)
| | | | - Boris A Kulnitskiy
- Technological Institute for Superhard and Novel Carbon Materials, Moscow, Troitsk 108840, Russia
- Moscow Institute of Physics and Technology, Moscow reg., Dolgoprudny, 141700, Russia
| | - Yuri G Vainer
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia.
| | - Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | | |
Collapse
|
6
|
Berezin AE, Berezin AA. Point-of-care heart failure platform: where are we now and where are we going to? Expert Rev Cardiovasc Ther 2022; 20:419-429. [PMID: 35588730 DOI: 10.1080/14779072.2022.2080657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Heart failure (HF) remains a leading cause of cardiovascular (CV) mortality in patients with CV disease. The point-of-care (POC) HF platform seems to be an ideal non-invasive workflow-adapted system for personally adjusted management of patients with HF. AREAS COVERED In the present manuscript, we reviewed the literature covering some relevant studies regarding the role of point-of care heart failure platform in the risk stratification, earlier diagnosis and prognostically beneficial treatment of patients with different phenotypes of HF. EXPERT OPINION POC HF platform including personal consultation, optimization of the comorbidity treatment, step-by-step HF diagnostic algorithm, single biomarker measurements, has also partially been provided in the current guidelines. Although there are several obstacles to implement POC in routine practice, such as education level, aging, affordability of health care, even partial implementation of POC can also improve clinical outcomes. POC seems to be an evolving model, more research studies are required to clearly see whether it helps to make better decisions with diagnosis and care of HF, as well helps to achieve better clinical outcomes.In summary, the POC HF platform is considered to be a more effective tool than conventional algorithm of HF management.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, Zaporozhye State Medical University, 26, Mayakovsky av., Zaporozhye, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, Ukraine
| |
Collapse
|
7
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|