1
|
Kuru E, Rittichier J, de Puig H, Flores A, Rout S, Han I, Reese AE, Bartlett TM, De Moliner F, Bernier SG, Galpin JD, Marchand J, Bedell W, Robinson-McCarthy L, Ahern CA, Bernhardt TG, Rudner DZ, Collins JJ, Vendrell M, Church GM. Rapid discovery and evolution of nanosensors containing fluorogenic amino acids. Nat Commun 2024; 15:7531. [PMID: 39237489 PMCID: PMC11377706 DOI: 10.1038/s41467-024-50956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Binding-activated optical sensors are powerful tools for imaging, diagnostics, and biomolecular sensing. However, biosensor discovery is slow and requires tedious steps in rational design, screening, and characterization. Here we report on a platform that streamlines biosensor discovery and unlocks directed nanosensor evolution through genetically encodable fluorogenic amino acids (FgAAs). Building on the classical knowledge-based semisynthetic approach, we engineer ~15 kDa nanosensors that recognize specific proteins, peptides, and small molecules with up to 100-fold fluorescence increases and subsecond kinetics, allowing real-time and wash-free target sensing and live-cell bioimaging. An optimized genetic code expansion chemistry with FgAAs further enables rapid (~3 h) ribosomal nanosensor discovery via the cell-free translation of hundreds of candidates in parallel and directed nanosensor evolution with improved variant-specific sensitivities (up to ~250-fold) for SARS-CoV-2 antigens. Altogether, this platform could accelerate the discovery of fluorogenic nanosensors and pave the way to modify proteins with other non-standard functionalities for diverse applications.
Collapse
Affiliation(s)
- Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - Jonathan Rittichier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Helena de Puig
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Flores
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Subhrajit Rout
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Isaac Han
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Abigail E Reese
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Thomas M Bartlett
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Fabio De Moliner
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Sylvie G Bernier
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Jorge Marchand
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - William Bedell
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Paschold A, Schäffler M, Miao X, Gardon L, Krüger S, Heise H, Röhr MIS, Ott M, Strodel B, Binder WH. Photocontrolled Reversible Amyloid Fibril Formation of Parathyroid Hormone-Derived Peptides. Bioconjug Chem 2024; 35:981-995. [PMID: 38865349 PMCID: PMC11261605 DOI: 10.1021/acs.bioconjchem.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Peptide fibrillization is crucial in biological processes such as amyloid-related diseases and hormone storage, involving complex transitions between folded, unfolded, and aggregated states. We here employ light to induce reversible transitions between aggregated and nonaggregated states of a peptide, linked to the parathyroid hormone (PTH). The artificial light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) is embedded into a segment of PTH, the peptide PTH25-37, to control aggregation, revealing position-dependent effects. Through in silico design, synthesis, and experimental validation of 11 novel PTH25-37-derived peptides, we predict and confirm the amyloid-forming capabilities of the AMPB-containing peptides. Quantum-chemical studies shed light on the photoswitching mechanism. Solid-state NMR studies suggest that β-strands are aligned parallel in fibrils of PTH25-37, while in one of the AMPB-containing peptides, β-strands are antiparallel. Simulations further highlight the significance of π-π interactions in the latter. This multifaceted approach enabled the identification of a peptide that can undergo repeated phototriggered transitions between fibrillated and defibrillated states, as demonstrated by different spectroscopic techniques. With this strategy, we unlock the potential to manipulate PTH to reversibly switch between active and inactive aggregated states, representing the first observation of a photostimulus-responsive hormone.
Collapse
Affiliation(s)
- André Paschold
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| | - Moritz Schäffler
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Xincheng Miao
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Luis Gardon
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephanie Krüger
- Biozentrum,
Martin Luther University Halle-Wittenberg, Weinberweg 22, Halle 06120, Germany
| | - Henrike Heise
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Merle I. S. Röhr
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Maria Ott
- Institute
of Biophysics, Faculty of Natural Science I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle 06120, Germany
| | - Birgit Strodel
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Wolfgang H. Binder
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| |
Collapse
|
3
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
4
|
Gräwe A, Spruit CM, de Vries RP, Merkx M. Bioluminescent detection of viral surface proteins using branched multivalent protein switches. RSC Chem Biol 2024; 5:148-157. [PMID: 38333197 PMCID: PMC10849123 DOI: 10.1039/d3cb00164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Fast and reliable virus diagnostics is key to prevent the spread of viruses in populations. A hallmark of viruses is the presence of multivalent surface proteins, a property that can be harnessed to control conformational switching in sensor proteins. Here, we introduce a new sensor platform (dark-LUX) for the detection of viral surface proteins consisting of a general bioluminescent framework that can be post-translationally functionalized with separately expressed binding domains. The platform relies on (1) plug-and-play bioconjugation of different binding proteins via SpyTag/SpyCatcher technology to create branched protein structures, (2) an optimized turn-on bioluminescent switch based on complementation of the split-luciferase NanoBiT upon target binding and (3) straightforward exploration of the protein linker space. The influenza A virus (IAV) surface proteins hemagglutinin (HA) and neuraminidase (NA) were used as relevant multivalent targets to establish proof of principle and optimize relevant parameters such as linker properties, choice of target binding domains and the optimal combination of the competing NanoBiT components SmBiT and DarkBiT. The sensor framework allows rapid conjugation and exchange of various binding domains including scFvs, nanobodies and de novo designed binders for a variety of targets, including the construction of a heterobivalent switch that targets the head and stem region of hemagglutinin. The modularity of the platform thus allows straightforward optimization of binding domains and scaffold properties for existing viral targets, and is well suited to quickly adapt bioluminescent sensor proteins to effectively detect newly evolving viral epitopes.
Collapse
Affiliation(s)
- Alexander Gräwe
- Laboratory of Protein Engineering, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Cindy M Spruit
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology and Drug Discovery Utrecht The Netherlands
| | - Robert P de Vries
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology and Drug Discovery Utrecht The Netherlands
| | - Maarten Merkx
- Laboratory of Protein Engineering, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
5
|
Rokutani S, Hiraka K, Saitoh H, Saito T, Nonaka Y, Ueno K, Tsukakoshi K, Ohnishi N, Ikebukuro K. Aptamer-enhanced particle aggregation inhibition assay for simple homogeneous protein detection using DNA aptamer and thermo-responsive magnetic nanoparticles. Biosens Bioelectron 2024; 245:115827. [PMID: 37979546 DOI: 10.1016/j.bios.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
A simple and sensitive homogeneous protein detection system is required for the early detection of biomarkers. Thermo-responsive magnetic particles (TM) have already been developed to achieve easy bound/free separation at the homogeneous protein detection system, but they are still limited owing to the requirement of secondary antibodies and negatively charged polymers, and it is challenging to control the TM aggregation behavior because of the size of the TM. Therefore, at new method to control TM aggregation behavior that is simple, easy, and highly sensitive is required. In this study, we developed a DNA aptamer-based TM assay as a simple protein detection system without additional secondary molecular recognition elements or negatively charged polymer. In the first attempt, a DNA aptamer was modified on the TM surface, and its aggregation behavior was monitored depending on the target molecule concentration. The TM aggregation rate during the heating process decreased depending on the amount of the DNA aptamer and increased depending on the target protein level. This suggests that the DNA aptamer prevented TM aggregation owing to its negative charge and achieved target protein detection owing to the cancellation of repulsion. Capturable aptamers were used in the TM assay to improve the sensitivity and limit of detection. The designed Capture DNA was modified on the TM surface, and the aptamer was captured in the presence of the target protein through a conformational change. Eventually, Capturable aptamer-based TM assay achieved a sub-nanomolar limit of detection and higher sensitivity than that of our initial investigation. Through this study and the ease of the DNA aptamer design, it was shown that the DNA aptamer-modified TM assay enabled the development of a simple and sensitive homogeneous protein detection system.
Collapse
Affiliation(s)
- Shunsuke Rokutani
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kentaro Hiraka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; College of Science, Engineering and Technology, Grand Canyon University, 3300 W Camelback Rd, Phoenix, AZ, 85017, USA; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Saitoh
- JNC Petrochemical Corporation, Goi Research Center, 5-1 Goi-kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Taiki Saito
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshihiko Nonaka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kinuko Ueno
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Noriyuki Ohnishi
- JNC Petrochemical Corporation, Goi Research Center, 5-1 Goi-kaigan, Ichihara, Chiba, 290-8551, Japan.
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
6
|
Campbell E, Luxton T, Kohl D, Goodchild SA, Walti C, Jeuken LJC. Chimeric Protein Switch Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:1-35. [PMID: 38273207 DOI: 10.1007/10_2023_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Timothy Luxton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Declan Kohl
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Christoph Walti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
7
|
Broch F, El Hajji L, Pietrancosta N, Gautier A. Engineering of Tunable Allosteric-like Fluorogenic Protein Sensors. ACS Sens 2023; 8:3933-3942. [PMID: 37830919 DOI: 10.1021/acssensors.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optical protein sensors that enable detection of relevant biomolecules of interest play central roles in biological research. Coupling fluorescent reporters with protein sensing units has enabled the development of a wide range of biosensors that recognize analytes with high selectivity. In these sensors, analyte recognition induces a conformational change in the protein sensing unit that can modulate the optical signal of the fluorescent reporter. Here, we explore various designs for the creation of tunable allosteric-like fluorogenic protein sensors through incorporation of sensing protein units within the chemogenetic fluorescence-activating and absorption-shifting tag (FAST) that selectively binds and stabilizes the fluorescent state of 4-hydroxybenzylidene rhodanine (HBR) analogs. Conformational coupling allowed us to design analyte-responsive optical protein sensors through allosteric-like modulation of fluorogen binding.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, 75005 Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
8
|
Campbell E, Adamson H, Kohl D, Tiede C, Wälti C, Tomlinson DC, Jeuken LJC. Enzyme - Switch sensors for therapeutic drug monitoring of immunotherapies. Biosens Bioelectron 2023; 237:115488. [PMID: 37419072 PMCID: PMC10427837 DOI: 10.1016/j.bios.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
Therapeutic monoclonal antibodies (TmAb) have emerged as effective treatments for a number of cancers and autoimmune diseases. However, large interpatient disparities in the pharmacokinetics of TmAb treatment requires close therapeutic drug monitoring (TDM) to optimise dosage for individual patients. Here we demonstrate an approach for achieving rapid, sensitive quantification of two monoclonal antibody therapies using a previously described enzyme switch sensor platform. The enzyme switch sensor consists of a β-lactamase - β-lactamase inhibitor protein (BLA-BLIP) complex with two anti-idiotype binding proteins (Affimer proteins) as recognition elements. The BLA-BLIP sensor was engineered to detect two TmAbs (trastuzumab and ipilimumab) by developing constructs incorporating novel synthetic binding reagents to each of these mAbs. Trastuzumab and ipilimumab were successfully monitored with sub nM sensitivity in up to 1% serum, thus covering the relevant therapeutic range. Despite the modular design, the BLA-BLIP sensor was unsuccessful in detecting two further TmAbs (rituximab and adalimumab), an explanation for which was explored. In conclusion, the BLA-BLIP sensors provide a rapid biosensor for TDM of trastuzumab and ipilimumab with the potential to improve therapy. The sensitivity of this platform alongside its rapid action would be suitable for bedside monitoring in a point-of-care (PoC) setting.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Hope Adamson
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Declan Kohl
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Christian Tiede
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Christoph Wälti
- School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - Darren C Tomlinson
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lars J C Jeuken
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom; Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands.
| |
Collapse
|
9
|
Shui S, Buckley S, Scheller L, Correia BE. Rational design of small-molecule responsive protein switches. Protein Sci 2023; 32:e4774. [PMID: 37656809 PMCID: PMC10510469 DOI: 10.1002/pro.4774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Small-molecule responsive protein switches are powerful tools for controlling cellular processes. These switches are designed to respond rapidly and specifically to their inducer. They have been used in numerous applications, including the regulation of gene expression, post-translational protein modification, and signal transduction. Typically, small-molecule responsive protein switches consist of two proteins that interact with each other in the presence or absence of a small molecule. Recent advances in computational protein design already contributed to the development of protein switches with an expanded range of small-molecule inducers and increasingly sophisticated switch mechanisms. Further progress in the engineering of small-molecule responsive switches is fueled by cutting-edge computational design approaches, which will enable more complex and precise control over cellular processes and advance synthetic biology applications in biotechnology and medicine. Here, we discuss recent milestones and how technological advances are impacting the development of chemical switches.
Collapse
Affiliation(s)
- Sailan Shui
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Stephen Buckley
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Leo Scheller
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Bruno E. Correia
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| |
Collapse
|
10
|
Oliayi M, Emamzadeh R, Rastegar M, Nazari M. Tri-part NanoLuc as a new split technology with potential applications in chemical biology: a mini-review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3924-3931. [PMID: 37545367 DOI: 10.1039/d3ay00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
For several decades, researchers have been using protein-fragment complementation assay (PCA) approaches for biosensing to study protein-protein interaction for a variety of aims, including viral infection, cellular apoptosis, G protein coupled receptor (GPCR) signaling, drug and substrate screening, and protein aggregation and protein editing by CRISPR/Cas9. As a reporter, NanoLuc (NLuc), a smaller and the brightest engineered luciferase derived from deep-sea shrimp Oplophorus gracilirostris, has been found to have many benefits over other luminescent enzymes in PCA. Inspired by the split green fluorescent protein (GFP) and its β-barrel structure, two split NLuc consisting of peptide fragments have been reported including the binary and ternary NLuc systems. NanoBiT® (large fragment + peptide) has been used extensively. In contrast, tripart split NLuc (large fragment + 2 peptides) has been applied and hardly used, while it has some advantages over NanoBiT in some studies. Nevertheless, tripart NLuc has some drawbacks and challenges to overcome but has several potential characteristics to become a multifunctional and powerful tool. In this review, several aspects of tripart NLuc are studied and a brief comparison with NanoBiT® is given.
Collapse
Affiliation(s)
- Mina Oliayi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
d'Amone L, Matzeu G, Quijano-Rubio A, Callahan GP, Napier B, Baker D, Omenetto FG. Reshaping de Novo Protein Switches into Bioresponsive Materials for Biomarker, Toxin, and Viral Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208556. [PMID: 36493355 DOI: 10.1002/adma.202208556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
De novo designed protein switches are powerful tools to specifically and sensitively detect diverse targets with simple chemiluminescent readouts. Finding an appropriate material host for de novo designed protein switches without altering their thermodynamics while preserving their intrinsic stability over time would enable the development of a variety of sensing formats to monitor exposure to pathogens, toxins, and for disease diagnosis. Here, a de novo protein-biopolymer hybrid that maintains the detection capabilities induced by the conformational change of the incorporated proteins in response to analytes of interest is generated in multiple, shelf-stable material formats without the need of refrigerated storage conditions. A set of functional demonstrator devices including personal protective equipment such as masks and laboratory gloves, free-standing films, air quality monitors, and wearable devices is presented to illustrate the versatility of the approach. Such formats are designed to be responsive to human epidermal growth factor receptor (HER2), anti-hepatitis B (HBV) antibodies, Botulinum neurotoxin B (BoNT/B), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This combination of form and function offers wide opportunities for ubiquitous sensing in multiple environments by enabling a large class of bio-responsive interfaces of broad utility.
Collapse
Affiliation(s)
- Luciana d'Amone
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Giusy Matzeu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Alfredo Quijano-Rubio
- Department of Biochemistry, Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Gregory P Callahan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Bradley Napier
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David Baker
- Department of Biochemistry, Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Physics, Tufts University, Medford, MA, 02155, USA
- Laboratory for Living Devices, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
12
|
Wu CC, Huang SJ, Fu TY, Lin FL, Wang XY, Tan KT. Small-Molecule Modulated Affinity-Tunable Semisynthetic Protein Switches. ACS Sens 2022; 7:2691-2700. [PMID: 36084142 DOI: 10.1021/acssensors.2c01211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Engineered protein switches have been widely applied in cell-based protein sensors and point-of-care diagnosis for the rapid and simple analysis of a wide variety of proteins, metabolites, nucleic acids, and enzymatic activities. Currently, these protein switches are based on two main types of switching mechanisms to transduce the target binding event to a quantitative signal, through a change in the optical properties of fluorescent molecules and the activation of enzymatic activities. In this paper, we introduce a new affinity-tunable protein switch strategy in which the binding of a small-molecule target with the protein activates the streptavidin-biotin interaction to generate a readout signal. In the absence of a target, the biotinylated protein switch forms a closed conformation where the biotin is positioned in close proximity to the protein, imposing a large steric hindrance to prevent the effective binding with streptavidin. In the presence of the target molecule, this steric hindrance is removed, thereby exposing the biotin for streptavidin binding to produce strong fluorescent signals. With this modular sensing concept, various sulfonamide, methotrexate, and trimethoprim drugs can be selectively detected on the cell surface of native and genetically engineered cells using different fluorescent dyes and detection techniques.
Collapse
Affiliation(s)
- Chien-Chi Wu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Shao-Jie Huang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Tsung-Yu Fu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Fang-Ling Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Xin-You Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| |
Collapse
|
13
|
McArthur N, Cruz-Teran C, Thatavarty A, Reeves GT, Rao BM. Experimental and Analytical Framework for "Mix-and-Read" Assays Based on Split Luciferase. ACS OMEGA 2022; 7:24551-24560. [PMID: 35874239 PMCID: PMC9301641 DOI: 10.1021/acsomega.2c02319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of immunodetection assays including the widely used enzyme-linked immunosorbent assay (ELISA) in applications such as point-of-care detection is often limited by the need for protein immobilization and multiple binding and washing steps. Here, we describe an experimental and analytical framework for the development of simple and modular "mix-and-read" enzymatic complementation assays based on split luciferase that enable sensitive detection and quantification of analytes in solution. In this assay, two engineered protein binders targeting nonoverlapping epitopes on the target analyte were each fused to nonactive fragments of luciferase to create biosensor probes. Binding proteins to two model targets, lysozyme and Sso6904, were isolated from a combinatorial library of Sso7d mutants using yeast surface display. In the presence of the analyte, probes were brought into close proximity, reconstituting enzymatic activity of luciferase and enabling detection of low picomolar concentrations of the analyte by chemiluminescence. Subsequently, we constructed an equilibrium binding model that relates binding affinities of the binding proteins for the target, assay parameters such as the concentrations of probes used, and assay performance (limit of detection and concentration range over which the target can be quantified). Overall, our experimental and analytical framework provides the foundation for the development of split luciferase assays for detection and quantification of various targets.
Collapse
Affiliation(s)
- Nikki McArthur
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carlos Cruz-Teran
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Apoorva Thatavarty
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory T. Reeves
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Program in Genetics, Texas A&M University, College Station, Texas 77843, United States
| | - Balaji M. Rao
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden
LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
14
|
Protein engineering for electrochemical biosensors. Curr Opin Biotechnol 2022; 76:102751. [PMID: 35777077 DOI: 10.1016/j.copbio.2022.102751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The development of electrochemical biosensors has gained tremendous attention. Protein engineering has been applied for enhancing properties of native redox enzymes, such as selectivity, sensitivity, and stability required for applicable biosensors. This review highlights recent advances of protein engineering to improve enzymatic catalysis of biosensors, facilitate electron transfer and enzyme immobilization, and construct allosteric protein biosensors. The pros and cons of different protein engineering strategies are briefly discussed, and perspectives are further provided.
Collapse
|
15
|
Adamson H, Ajayi MO, Gilroy KE, McPherson MJ, Tomlinson DC, Jeuken LJC. Rapid Quantification of C. difficile Glutamate Dehydrogenase and Toxin B (TcdB) with a NanoBiT Split-Luciferase Assay. Anal Chem 2022; 94:8156-8163. [PMID: 35634999 PMCID: PMC9201815 DOI: 10.1021/acs.analchem.1c05206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
C. difficile infection (CDI) is a leading healthcare-associated
infection with a high morbidity and mortality and is a financial burden.
No current standalone point-of-care test (POCT) is sufficient for
the identification of true CDI over a disease-free carriage of C. difficile, so one is urgently required to ensure timely,
appropriate treatment. Here, two types of binding proteins, Affimers
and nanobodies, targeting two C. difficile biomarkers,
glutamate dehydrogenase (GDH) and toxin B (TcdB), are combined in
NanoBiT (NanoLuc Binary Technology) split-luciferase assays. The assays
were optimized and their performance controlling parameters were examined.
The 44 fM limit of detection (LoD), 4–5 log range and 1300-fold
signal gain of the TcdB assay in buffer is the best observed for a
NanoBiT assay to date. In the stool sample matrix, the GDH and TcdB
assay sensitivity (LoD = 4.5 and 2 pM, respectively) and time to result
(32 min) are similar to a current, commercial lateral flow POCT, but
the NanoBit assay has no wash steps, detects clinically relevant TcdB
over TcdA, and is quantitative. Development of the assay into a POCT
may drive sensitivity further and offer an urgently needed ultrasensitive
TcdB test for the rapid diagnosis of true CDI. The NanoBiTBiP (NanoBiT
with Binding Proteins) system offers advantages over NanoBiT assays
with antibodies as binding elements in terms of ease of production
and assay performance. We expect this methodology and approach to
be generally applicable to other biomarkers.
Collapse
Affiliation(s)
- Hope Adamson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Modupe O. Ajayi
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kate E. Gilroy
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michael J. McPherson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Darren C. Tomlinson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lars J. C. Jeuken
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Leiden Institute of Chemistry, Leiden University, PC Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
16
|
Hossain MS, Zhang Z, Ashok S, Jenks AR, Lynch CJ, Hougland JL, Mozhdehi D. Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS APPLIED BIO MATERIALS 2022; 5:1846-1856. [PMID: 35044146 PMCID: PMC9115796 DOI: 10.1021/acsabm.1c01162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Despite broad interest in understanding the biological implications of protein farnesylation in regulating different facets of cell biology, the use of this post-translational modification to develop protein-based materials and therapies remains underexplored. The progress has been slow due to the lack of accessible methodologies to generate farnesylated proteins with broad physicochemical diversities rapidly. This limitation, in turn, has hindered the empirical elucidation of farnesylated proteins' sequence-structure-function rules. To address this gap, we genetically engineered prokaryotes to develop operationally simple, high-yield biosynthetic routes to produce farnesylated proteins and revealed determinants of their emergent material properties (nano-aggregation and phase-behavior) using scattering, calorimetry, and microscopy. These outcomes foster the development of farnesylated proteins as recombinant therapeutics or biomaterials with molecularly programmable assembly.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sudhat Ashok
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ashley R. Jenks
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
17
|
Wells PK, Smutok O, Guo Z, Alexandrov K, Katz E. Nanostructured Interface Loaded with Chimeric Enzymes for Fluorimetric Quantification of Cyclosporine A and FK506. Anal Chem 2022; 94:7303-7310. [PMID: 35543230 DOI: 10.1021/acs.analchem.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in protein engineering resulted in increased efforts to create protein biosensors that can replace instrumentation-heavy analytical and diagnostic methods. Sensitivity, amenability to multiplexing, and manufacturability remain to be among the key issues preventing broad utilization of protein biosensors. Here, we attempt to address these by constructing arrays utilizing protein biosensors based on the artificial allosteric variant of PQQ-glucose dehydrogenase (GDH). We demonstrated that the silica nanoparticle-immobilized GDH protein could be deposited on fiberglass sheets without loss of activity. The particle-associated GDH activity could be monitored using changes in the fluorescence of the commonly used electron mediator phenazine methosulfate. The constructed biosensor arrays of macrocyclic immunosuppressant drugs cyclosporine A and FK-506 displayed very low background and a remarkable dynamic range exceeding 300-fold that resulted in a limit of detection of 2 pM for both analytes. This enabled us to quantify both drugs in human blood, serum, urine, and saliva. The arrays could be stored in dry form and quantitatively imaged using a smartphone camera, demonstrating the method's suitability for field and point-of-care applications. The developed approach provides a generalizable platform for biosensor array development that is compatible with inexpensive and potentially scalable manufacturing.
Collapse
Affiliation(s)
- Paulina K Wells
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
18
|
Zubi YS, Seki K, Li Y, Hunt AC, Liu B, Roux B, Jewett MC, Lewis JC. Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches. Nat Commun 2022; 13:1864. [PMID: 35387988 PMCID: PMC8987029 DOI: 10.1038/s41467-022-29239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic control over protein function is a central challenge in synthetic biology. To address this challenge, we describe the development of an integrated computational and experimental workflow to incorporate a metal-responsive chemical switch into proteins. Pairs of bipyridinylalanine (BpyAla) residues are genetically encoded into two structurally distinct enzymes, a serine protease and firefly luciferase, so that metal coordination biases the conformations of these enzymes, leading to reversible control of activity. Computational analysis and molecular dynamics simulations are used to rationally guide BpyAla placement, significantly reducing experimental workload, and cell-free protein synthesis coupled with high-throughput experimentation enable rapid prototyping of variants. Ultimately, this strategy yields enzymes with a robust 20-fold dynamic range in response to divalent metal salts over 24 on/off switches, demonstrating the potential of this approach. We envision that this strategy of genetically encoding chemical switches into enzymes will complement other protein engineering and synthetic biology efforts, enabling new opportunities for applications where precise regulation of protein function is critical.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrew C Hunt
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
19
|
Ding Y, Cui P, Chen H, Li J, Huang L, González-Sapienza G, Hammock BD, Wang M, Hua X. "Ready-to-use" immunosensor for the detection of small molecules with fast readout. Biosens Bioelectron 2022; 201:113968. [PMID: 35007993 PMCID: PMC8863114 DOI: 10.1016/j.bios.2022.113968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Immunoassays are commonly used methods for detection of small molecules that typically require numerous steps of the labeling between immune-recognition reagents and tracers, immobilization and recurrent washing, making them time consuming and difficult to adapt into point of care formats. Here we describe a "ready-to-use" homogeneous competitive immunosensor with an assay time of 10 min that is based exclusively on recombinant reagents. The signal is produced when the split fragments of the nano luciferase (Nluc) are brought together by the interaction of a heavy chain only variable domain (VHH) with a peptidomimetic of the target small molecule. A VHH to 2,4-dichlorophenoxyacetic acid (2,4-D) was used to isolated the peptidomimetic (NGFFEPWQVVYV) from phage display libraries using six panning conditions. Then the peptidomimetic and VHH were fused with the larger (LgN) and smaller piece (SmN) of split fragments of Nluc, respectively. In order to optimize the signal and sensitivity of the immunosensor, we explored the effects of the spacer between the peptidomimetic and LgN, the copy number of peptidomimetics, and the spacer between SmN and VHH, generating 24 combinations that allowed to conclude on their respective roles. Eventually, the developed "ready-to-use" immunosensor performed excellent signal-to-noise ratio and sensitivity, and could be applied to the detection of 2,4-D in real samples. Meanwhile, the immunosensor totally realizes labeling-free, immobilization-free and washing-free, also can be produced in a highly cost effective way.
Collapse
Affiliation(s)
- Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Panpan Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, 11600, Uruguay
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, CA, 95616, United States
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China.
| |
Collapse
|
20
|
McLamore ES, Moreira G, Vanegas DC, Datta SPA. Context-Aware Diagnostic Specificity (CADS). BIOSENSORS 2022; 12:101. [PMID: 35200361 PMCID: PMC8869940 DOI: 10.3390/bios12020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023]
Abstract
Rapid detection of proteins is critical in a vast array of diagnostic or monitoring applications [...].
Collapse
Affiliation(s)
- Eric S. McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
| | - Geisianny Moreira
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA
| | - Diana C. Vanegas
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA
| | - Shoumen Palit Austin Datta
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA;
- MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Suite 232, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
John AM, Sekhon H, Ha JH, Loh SN. Engineering a Fluorescent Protein Color Switch Using Entropy-Driven β-Strand Exchange. ACS Sens 2022; 7:263-271. [PMID: 35006676 DOI: 10.1021/acssensors.1c02239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein conformational switches are widely used in biosensing. They are often composed of an input domain (which binds a target ligand) fused to an output domain (which generates an optical readout). A central challenge in designing such switches is to develop mechanisms for coupling the input and output signals via conformational changes. Here, we create a biosensor in which binding-induced folding of the input domain drives a conformational shift in the output domain that results in a sixfold green-to-yellow ratiometric fluorescence change in vitro and a 35-fold intensiometric fluorescence increase in cultured cells. The input domain consists of circularly permuted FK506 binding protein (cpFKBP) that folds upon binding its target ligand (FK506 or rapamycin). cpFKBP folding induces the output domain, an engineered green fluorescent protein (GFP) variant, to replace one of its β-strands (containing T203 and specifying green fluorescence) with a duplicate β-strand (containing Y203 and specifying yellow fluorescence) in an intramolecular exchange reaction. This mechanism employs the loop-closure entropy principle, embodied by the folding of the partially disordered cpFKBP domain, to couple ligand binding to the GFP color shift. This study highlights the high-energy barriers present in GFP folding which cause β-strand exchange to be slow and are also likely responsible for the shift from the β-strand exchange mechanism in vitro to ligand-induced chromophore maturation in cells. The proof-of-concept design has the advantages of full genetic encodability and potential for modularity. The latter attribute is enabled by the natural coupling of binding and folding and circular permutation of the input domain, which theoretically allows different binding domains to be compatible for insertion into the GFP surface loop.
Collapse
Affiliation(s)
- Anna Miriam John
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
22
|
Dillen A, Lammertyn J. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. Analyst 2022; 147:1006-1023. [DOI: 10.1039/d1an02308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining affinity-based nanoswitches with state-dependent readout platforms allows for continuous biosensing and acquisition of real-time information about biochemical processes occurring in the environment of interest.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
23
|
Guo Z, Smutok O, Johnston WA, Ayva CE, Walden P, McWhinney B, Ungerer JPJ, Melman A, Katz E, Alexandrov K. Circular Permutated PQQ‐Glucose Dehydrogenase as an Ultrasensitive Electrochemical Biosensor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Cagla Ergun Ayva
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Brett McWhinney
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
| | - Jacobus P. J. Ungerer
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
- Faculty of Health and Behavioural Sciences University of Queensland Brisbane QLD 4072 Australia
| | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
24
|
Rose J, Müller B, Groscurth S, Giese J, Eirich J, Finkemeier I, Twyman RM, Prüfer D, Noll GA. The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues. Int J Biol Macromol 2021; 193:1332-1339. [PMID: 34742849 DOI: 10.1016/j.ijbiomac.2021.10.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
Forisomes are giant polyprotein complexes that undergo reversible conformational rearrangements from a spindle-like to a plug-like state in response to Ca2+ or changes in pH. They act as valves in the plant vasculature, and reproduce this function in vitro to regulate flow in microfluidic capillaries controlled by electro-titration. Heterologous expression in yeast or plants allows the large-scale production of tailor-made artificial forisomes for technical applications. Here we investigated the unexpected disintegration of artificial forisomes in response to Ca2+ following the deletion of the M1 motif in the MtSEO-F1 protein or the replacement of all four conserved cysteine residues therein. This phenomenon could be mimicked in wild-type forisomes under reducing conditions by adding a thiol alkylating agent. We propose a model in which reversible changes in forisome structure depend on cysteine residues with ambiguous redox states, allowing the formation of intermolecular disulfide bridges (confirmed by mass spectrometry) as well as noncovalent thiol interactions to connect forisome substructures in the dispersed state. This is facilitated by the projection of the M1 motif from the MtSEO-F1 protein as part of an extended loop. Our findings support the rational engineering of disintegrating forisomes to control the release of peptides or enzymes in microfluidic systems.
Collapse
Affiliation(s)
- Judith Rose
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 7/8, 48143 Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany
| | - Sira Groscurth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany
| | - Jonas Giese
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 7/8, 48143 Münster, Germany
| | - Jürgen Eirich
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 7/8, 48143 Münster, Germany
| | - Iris Finkemeier
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 7/8, 48143 Münster, Germany
| | | | - Dirk Prüfer
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 7/8, 48143 Münster, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany
| | - Gundula A Noll
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 7/8, 48143 Münster, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
25
|
Alexandrov K, Guo Z, Smutok O, Wayne A Johnston WAJ, Ergun Ayva C, Walden PM, McWhinney B, Ungerer J, Melman A, Katz E. Circular permutated PQQ-glucose dehydrogenase as an ultrasensitive electrochemical biosensor. Angew Chem Int Ed Engl 2021; 61:e202109005. [PMID: 34633119 DOI: 10.1002/anie.202109005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/08/2022]
Abstract
Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10 fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain:ligand complexes. The developed biosensors demonstrated sub-nanomolar affinities for small molecules and proteins in colorimetric and electrochemical assays. For instance, the concentration of Cyclosporine A could be measured in 1 ml of undiluted blood with the same accuracy as the leading diagnostic technique that uses 50 times more sample. We further used this biosensor to construct highly porous gold bioelectrodes capable of robustly detecting concentrations of Cyclosporine A as low as 20 pM and retained functionality in samples containing at least 60% human serum. These experiments suggest that the developed biosensor platform is generalizable and may be suitable for Point-of-Care diagnostics.
Collapse
Affiliation(s)
- Kirill Alexandrov
- Queensland University of Technology, Centre for Tropical Crops and Biocommodities, 2 george st, 4100, Brisbane, AUSTRALIA
| | - Zhong Guo
- Queensland University of Technology Institute of Health and Biomedical Innovation Research Methods Group: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Oleh Smutok
- Clarkson University, electrochemistry, UNITED STATES
| | - Wayne A Johnston Wayne A Johnston
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Cagla Ergun Ayva
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT Synthetic Biology Alliance, AUSTRALIA
| | - Patricia M Walden
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic biology alliance, AUSTRALIA
| | - Brett McWhinney
- Central Laboratory: Health Support Queensland Pathology Queensland, chemical pathology, AUSTRALIA
| | - Jacobus Ungerer
- Health Support Queensland Pathology Queensland, Chemical Pathology, AUSTRALIA
| | | | - Evgeny Katz
- Clarkson University, electrochemistry, AUSTRALIA
| |
Collapse
|
26
|
Bogetti AT, Presti MF, Loh SN, Chong LT. The Next Frontier for Designing Switchable Proteins: Rational Enhancement of Kinetics. J Phys Chem B 2021; 125:9069-9077. [PMID: 34324338 PMCID: PMC8826494 DOI: 10.1021/acs.jpcb.1c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Designing proteins that can switch between active (ON) and inactive (OFF) conformations in response to signals such as ligand binding and incident light has been a tantalizing endeavor in protein engineering for over a decade. While such designs have yielded novel biosensors, therapeutic agents, and smart biomaterials, the response times (times for switching ON and OFF) of many switches have been too slow to be of practical use. Among the defining properties of such switches, the kinetics of switching has been the most challenging to optimize. This is largely due to the difficulty of characterizing the structures of transient states, which are required for manipulating the height of the effective free energy barrier between the ON and OFF states. We share our perspective of the most promising new experimental and computational strategies over the past several years for tackling this next frontier for designing switchable proteins.
Collapse
Affiliation(s)
- Anthony T Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Gräwe A, Stein V. Linker Engineering in the Context of Synthetic Protein Switches and Sensors. Trends Biotechnol 2020; 39:731-744. [PMID: 33293101 DOI: 10.1016/j.tibtech.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Linkers play critical roles in the construction of synthetic protein switches and sensors as they functionally couple a receptor with an actuator. With an increasing number of molecular toolboxes and experimental strategies becoming available that can be applied to engineer protein switches and sensors with tailored response functions, optimising the connecting linkers remains an idiosyncratic and empiric process. This review aims to provide an in-depth analysis of linker motifs, the biophysical properties they confer, and how they impact the performance of synthetic protein switches and sensors while identifying trends, mechanisms, and strategies that underlie the most potent switches and sensors.
Collapse
Affiliation(s)
- Alexander Gräwe
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| | - Viktor Stein
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany.
| |
Collapse
|