1
|
Zou S, Peng G, Ma Z. Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2014. [PMID: 39728549 DOI: 10.3390/nano14242014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules. During this functionalizing process, nanomaterials can either be the objects of surface modification or the materials used to modify other base surfaces. These surface-functionalizing strategies, involving the coordination of sensor structures and materials, as well as the associated modifying methods, are largely determinative in the performance of biosensing applications. This review introduces the current studies on biosensors with multiplexing potentials and focuses specifically on the roles of nanomaterials in the design and functionalization of these biosensors. A detailed description of the paradigms used for method selection has been set forth to assist understanding and accelerate the application of novel nanotechnologies in the development of biosensors.
Collapse
Affiliation(s)
- Shangjie Zou
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangdun Peng
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Li D, Huang Q, Wang K. Exonuclease III-propelled DNAzyme walker: an electrochemical strategy for microRNA diagnostics. Mikrochim Acta 2024; 191:173. [PMID: 38436735 DOI: 10.1007/s00604-024-06208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
MicroRNA detection is crucial for early infectious disease diagnosis and rapid cancer screening. However, conventional techniques like reverse transcription-quantitative polymerase chain reaction, requiring specialized training and intricate procedures, are less suitable for point-of-care analyses. To address this, we've developed a straightforward amplifier based on an exonuclease III (exo III)-propelled DNAzyme walker for sensitive and selective microRNA detection. This amplifier employs a specially designed hairpin probe with two exposed segments for strand recognition. Once the target microRNA is identified by the hairpin's extended single-strand DNA, exo III initiates its digestion, allowing microRNA regeneration and subsequent hairpin probe digestion cycles. This cyclical process produces a significant amount of DNAzyme, leading to a marked reduction in electrochemical signals. The biosensor exhibits a detection range from 10 fM to 100 pM and achieves a detection limit of 5 fM (3σ criterion). Importantly, by integrating an "And logic gate," our system gains the capacity for simultaneous diagnosis of multiple microRNAs, enhancing its applicability in RNA-based disease diagnostics.
Collapse
Affiliation(s)
- Dengke Li
- Department of Rehabilitation Medicine, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kun Wang
- Department of Physics, New York University, New York, NY, 10003, USA
| |
Collapse
|
3
|
Safenkova IV, Samokhvalov AV, Serebrennikova KV, Eremin SA, Zherdev AV, Dzantiev BB. DNA Probes for Cas12a-Based Assay with Fluorescence Anisotropy Enhanced Due to Anchors and Salts. BIOSENSORS 2023; 13:1034. [PMID: 38131794 PMCID: PMC10741848 DOI: 10.3390/bios13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
CRISPR/Cas12a is a potent biosensing tool known for its high specificity in DNA analysis. Cas12a recognizes the target DNA and acquires nuclease activity toward single-stranded DNA (ssDNA) probes. We present a straightforward and versatile approach to transforming common Cas12a-cleavable DNA probes into enhancing tools for fluorescence anisotropy (FA) measurements. Our study involved investigating 13 ssDNA probes with linear and hairpin structures, each featuring fluorescein at one end and a rotation-slowing tool (anchor) at the other. All anchors induced FA changes compared to fluorescein, ranging from 24 to 110 mr. Significant FA increases (up to 180 mr) were obtained by adding divalent metal salts (Mg2+, Ca2+, Ba2+), which influenced the rigidity and compactness of the DNA probes. The specific Cas12a-based recognition of double-stranded DNA (dsDNA) fragments of the bacterial phytopathogen Erwinia amylovora allowed us to determine the optimal set (probe structure, anchor, concentration of divalent ion) for FA-based detection. The best sensitivity was obtained using a hairpin structure with dC10 in the loop and streptavidin located near the fluorescein at the stem in the presence of 100 mM Mg2+. The detection limit of the dsDNA target was equal to 0.8 pM, which was eight times more sensitive compared to the common fluorescence-based method. The enhancing set ensured detection of single cells of E. amylovora per reaction in an analysis based on CRISPR/Cas12a with recombinase polymerase amplification. Our approach is universal and easy to implement. Combining FA with Cas12a offers enhanced sensitivity and signal reliability and could be applied to different DNA and RNA analytes.
Collapse
Affiliation(s)
- Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Alexey V. Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Kseniya V. Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| |
Collapse
|
4
|
Liu G, Gao F, Yang X, Zhang J, Yang S, Li Y, Liu L. Aggregation-induced emission for the detection of peptide ligases with improving ligation efficiency. Anal Chim Acta 2023; 1284:341994. [PMID: 37996157 DOI: 10.1016/j.aca.2023.341994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Monitoring peptide ligase activity is of great significance for biological research, medical diagnosis, and drug discovery. The current methods for the detection of peptide ligases suffer from the limitations of high background signal, elaborate design of substrate, and high reversibility of ligation reaction. In this work, we proposed a simple and sensitive method for ligase detection with reducing ligation reversibility on the basis of aggregation-induced emission (AIE) mechanism. RESULTS The peptide probes labeled with AIE luminogens (AIEgens) were water-soluble and emitted weak fluorescence. After ligation reaction, the enzymatic products with AIEgens showed high hydrophobicity and could readily assembly into aggregates, thus lighting up the fluorescence. More interestingly, the formation of aggregates pushed the equilibrium to the generation of the desired ligation products, thus improving the catalytic efficiency by driving the reaction towards completion. The ligation reaction conversion rate (>80 %) is significantly higher than that without blocking the reversibility with additional treatment. With sortase A (SrtA) as the analyte example, the detection limit of this method was found to be 0.01 nM with a linear range of 0-50 nM. The system was applied to evaluate the inhibition efficiency of berberine chloride and quercetin and determine the activity of SrtA in serum, lysate and Staphylococcus aureus with satisfactory results. SIGNIFICANCE This study indicated that the ligation efficiency and detection sensitivity can be improved by reducing ligation reversibility through AIE phenomenon. The proposed strategy could be used for the detection of other peptide ligases by adopting sequence-specific peptide substrates.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Jingyi Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Suling Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
5
|
Murillo A, Holgado M, Laguna M. Reports on the sensitivity enhancement in interferometric based biosensors by biotin-streptavidin system. Heliyon 2023; 9:e23123. [PMID: 38149195 PMCID: PMC10750048 DOI: 10.1016/j.heliyon.2023.e23123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Antibody biotinylation is a process of attaching biotin molecules to antibodies by chemically modifying specific functional groups on the antibodies without altering their antigen recognition specificity. Biotin, a small vitamin, forms a strong and specific interaction with the protein streptavidin, resulting in a stable biotin-streptavidin (biotin-STV) complex. This biotin-STV interaction is widely exploited in various biotechnological applications, including biosensors. Biosensors are analytical devices that employ biological recognition elements, such as antibodies, enzymes, or nucleic acids, to detect and quantify target analytes in a sample. Antibodies are commonly used as recognition elements in biosensors due to their high specificity and affinity. In this study, the antibody anti-Bovine Serum Albumin (αBSA) has been biotinylated at different antibody:biotin ratios, and the stability of this labeling over time has been investigated. Furthermore, the sensitivity of the biosensor for detecting the Bovine Serum Albumin (BSA) protein has been compared using the biotinylated antibody and the non-biotinylated form, showing a four-fold improvement in detection. This system was also compared with the Enzyme-Linked ImmunoSorbent Assay (ELISA) technique. The advantages of using biotinylated antibodies in biosensors include increased stability and reproducibility of the biorecognition layer, as well as flexibility in sensor design, as different biotinylated antibodies can be utilized for diverse target analytes without altering the sensor's architecture.
Collapse
Affiliation(s)
- A.M.M. Murillo
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de La UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4a Planta Sur, 28040, Madrid, Spain
| | - M. Holgado
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de La UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4a Planta Sur, 28040, Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - M. Laguna
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de La UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4a Planta Sur, 28040, Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| |
Collapse
|
6
|
Jiang S, Ren J, Zhang Q, Liu W, Liu H, Xu Q, Tian X, Zhang CY. Construction of a Dendritic Nanoassembly-Based Fluorescent Biosensor for Electrostatic Interaction-Independent and Label-Free Measurement of Human Poly(ADP-ribose) Polymerase 1 in Lung Tissues. Anal Chem 2023; 95:11815-11822. [PMID: 37489894 DOI: 10.1021/acs.analchem.3c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is responsible for catalyzing the creation of poly(ADP-ribose) polymer and involved in DNA replication and repair. Sensitive measurement of PARP-1 is critical for clinical diagnosis. However, the conventional electrostatic attraction-based PAPR-1 assays usually involve laborious procedures, poor sensitivity, and false positives. Herein, we demonstrate the construction of a dendritic nanoassembly-based fluorescent biosensor for electrostatic interaction-independent and label-free measurement of human PARP-1 in lung tumor tissues. When PARP-1 is present, the specific double-stranded DNA (dsDNA)-activated PARP-1 transfers the ADP-ribosyl group from nicotinamide adenine dinucleotide (NAD+)/biotinylated NAD+ to the PARP-1 itself, resulting in the formation of biotinylated dsDNA-PARP-1-PAR polymer bioconjugates that can be captured by magnetic beads. Upon the addition of TdT, APE1, and NH2-modified T-rich probe, the captured dsDNAs with dual 3'-OH termini initiate TdT-activated APE1-mediated hyperbranched amplification to produce abundant dendritic DNA nanoassemblies that can be stained by SYBR Green I to generate a high fluorescence signal. This biosensor is characterized by a template-free, electrostatic interaction-independent, high sensitivity, and label-free assay. It enables rapid (less than 3 h) measurement of PARP-1 with a limit of detection of 4.37 × 10-8 U/μL and accurate measurement of cellular PARP-1 activity with single-cell sensitivity. Moreover, it is capable of screening potential inhibitors and discriminating the PARP-1 level in normal person tissues and lung cancer patient tissues, with great potential in PARP-1-related clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jingyi Ren
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wenjing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Cao L, Zhou Y, Gao L, Zheng Y, Cui X, Yin H, Wang S, Zhang M, Zhang H, Ai S. Photoelectrochemical biosensor for DNA demethylase detection based on enzymatically induced double-stranded DNA digestion by endonuclease-exonuclease system and Bi 4O 5Br 2-Au/CdS photoactive material. Talanta 2023; 262:124670. [PMID: 37245429 DOI: 10.1016/j.talanta.2023.124670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
A novel photoelectrochemical (PEC) biosensor for the detection of DNA demethylase MBD2 was developed based on Bi4O5Br2-Au/CdS photosensitive material. Bi4O5Br2 was firstly modified with gold nanoparticles (AuNPs), following with the modification onto the ITO electrode with CdS to realize the strong photocurrent response as a result of AuNPs had good conductibility and the matched energy between CdS and Bi4O5Br2. In the presence of MBD2, double-stranded DNA (dsDNA) on the electrode surface was demethylated, which triggered the digestion activity of endonuclease HpaII to cleave dsDNA and induced the further cleavage of the dsDNA fragment by exonuclease III (Exo III), causing the release of biotin labeled dsDNA and inhibiting the immobilization of streptavidin (SA) onto the electrode surface. As a results, the photocurrent was increased greatly. However, in the absence of MBD2, HpaII digestion activity was inhibited by DNA methylation modification, which further caused the failure in the release of biotin, leading to the successful immobilization of SA onto the electrode to realize a low photocurrent. The sensor had a detection of 0.3-200 ng/mL and a detection limit was 0.09 ng/mL (3σ). The applicability of this PEC strategy was assessed by studying the effect of environmental pollutants on MBD2 activity.
Collapse
Affiliation(s)
- LuLu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Lanlan Gao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Suo Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
8
|
Xia N, Cheng J, Tian L, Zhang S, Wang Y, Li G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. BIOSENSORS 2023; 13:543. [PMID: 37232904 PMCID: PMC10216504 DOI: 10.3390/bios13050543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The conventional hybridization chain reaction (HCR)-based electrochemical biosensors usually require the immobilization of probes on the electrode surface. This will limit the applications of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency. In this work, we proposed astrategy for the design of HCR-based electrochemical biosensors by integrating the advantages of homogeneous reaction and heterogeneous detection. Specifically, the targets triggered the autonomous cross-opening and hybridization oftwobiotin-labeled hairpin probes to form long-nicked dsDNA polymers. The HCR products with many biotin tags were then captured by a streptavidin-covered electrode, thus allowing for the attachment of streptavidin-conjugated signal reporters through streptavidin-biotin interactions. By employing DNA and microRNA-21 as the model targets and glucose oxidase as the signal reporter, the analytical performances of the HCR-based electrochemical biosensors were investigated. The detection limits of this method were found to be 0.6 fM and 1 fM for DNA and microRNA-21, respectively. The proposed strategy exhibited good reliability for target analysis in serum and cellular lysates. The strategy can be used to develop various HCR-based biosensors for a wide range of applications because sequence-specific oligonucleotides exhibit high binding affinity to a series of targets. In light of the high stability and commercial availability of streptavidin-modified materials, the strategy can be used for the design of different biosensors by changing the signal reporter and/or the sequence of hairpin probes.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | | | | | | | | | | |
Collapse
|
9
|
Chen B, Kiely J, Williams I, Luxton R. A non-faradaic impedimetric biosensor for monitoring of caspase 9 in mammalian cell culture. Bioelectrochemistry 2023; 153:108456. [PMID: 37247529 DOI: 10.1016/j.bioelechem.2023.108456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death is commonly associated with programmed cell death or apoptosis. During apoptosis, caspases are activated and cause a cascade of events that eventually lead to cell destruction. We report on an impedance spectroscopy measurement technique for the detection of total caspase-9 in buffer and complex fluids, such as cell culture media. Enhanced sensitivity is achieved by leveraging the physiochemical properties of zinc oxide and copper oxide at the electrode-solution interface. Characterisation of the biosensor surface was performed using scanning electron microscopy and indirectly using an enzyme-linked immunosorbent assay. The characteristic biomolecular interactions between the target analyte and specific capture probe of the biosensor are quantified using non-faradaic electrical impedance spectroscopy (nfEIS). The proof-of-concept biosensor demonstrated a detection limit of 0.07 U/mL (0.032 µM) in buffer. The sensor requires a low sample volume of 50 μL without the need for sample dilution facilitating rapid analysis. Using a luminescence-based assay, the presence of active caspase-9 was detected in the culture media following exposure to a pro-apoptotic agent. We envision that the caspase-9 biosensor will be useful as a cell stress screening device for apoptosis monitoring.
Collapse
Affiliation(s)
- Boyang Chen
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Janice Kiely
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Ibidapo Williams
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Richard Luxton
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| |
Collapse
|
10
|
Ma X, Lv Y, Liu P, Hao Y, Xia N. Switch-on Fluorescence Analysis of Protease Activity with the Assistance of a Nickel Ion-Nitrilotriacetic Acid-Conjugated Magnetic Nanoparticle. Molecules 2023; 28:molecules28083426. [PMID: 37110659 PMCID: PMC10144723 DOI: 10.3390/molecules28083426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Heterogeneous protease biosensors show high sensitivity and selectivity but usually require the immobilization of peptide substrates on a solid interface. Such methods exhibit the disadvantages of complex immobilization steps and low enzymatic efficiency induced by steric hindrance. In this work, we proposed an immobilization-free strategy for protease detection with high simplicity, sensitivity and selectivity. Specifically, a single-labeled peptide with oligohistidine-tag (His-tag) was designed as the protease substrate, which can be captured by a nickel ion-nitrilotriacetic acid (Ni-NTA)-conjugated magnetic nanoparticle (MNP) through the coordination interaction between His-tag and Ni-NTA. When the peptide was digested by protease in a homogeneous solution, the signal-labeled segment was released from the substrate. The unreacted peptide substrates could be removed by Ni-NTA-MNP, and the released segments remained in solution to emit strong fluorescence. The method was used to determine protease of caspase-3 with a low detection limit (4 pg/mL). By changing the peptide sequence and signal reporters, the proposal could be used to develop novel homogeneous biosensors for the detection of other proteases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yingxin Lv
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Panpan Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
11
|
Bao Q, Li G, Yang Z, Liu J, Wang H, Pang G, Guo Q, Wei J, Cheng W, Lin L. Electrochemical biosensor based on antibody-modified Au nanoparticles for rapid and sensitive analysis of influenza A virus. IONICS 2023; 29:2021-2029. [PMID: 37073286 PMCID: PMC9995174 DOI: 10.1007/s11581-023-04944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 05/03/2023]
Abstract
To cope with the easy transmissibility of the avian influenza A virus subtype H1N1, a biosensor was developed for rapid and highly sensitive electrochemical immunoassay. Based on the principle of specific binding between antibody and virus molecules, the active molecule-antibody-adapter structure was formed on the surface of an Au NP substrate electrode; it included a highly specific surface area and good electrochemical activity for selective amplification detection of the H1N1 virus. The electrochemical test results showed that the BSA/H1N1 Ab/Glu/Cys/Au NPs/CP electrode was used for the electrochemical detection of the H1N1 virus with a sensitivity of 92.1 µA (pg/mL)-1 cm2, LOD of 0.25 pg/ml, linear ranges of 0.25-5 pg/mL, and linearity of (R 2 = 0.9846). A convenient H1N1 antibody-based electrochemical electrode for the molecular detection of the H1N1 virus will be of great use in the field of epidemic prevention and raw poultry protection. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11581-023-04944-w.
Collapse
Affiliation(s)
- Qiwen Bao
- School of Precision Instrument and Optoelectronic Engineering, the State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Gang Li
- School of Precision Instrument and Optoelectronic Engineering, the State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Zhengchun Yang
- School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Advanced Materials and Printed Electronics Center, Tianjin University of Technology, Tianjin, 300384 China
| | - Jun Liu
- School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Advanced Materials and Printed Electronics Center, Tianjin University of Technology, Tianjin, 300384 China
| | - Hanjie Wang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Gaoju Pang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Qianjin Guo
- Analysis and Testing Center, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Jun Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055 China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163 People's Republic of China
| | - Ling Lin
- School of Precision Instrument and Optoelectronic Engineering, the State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| |
Collapse
|
12
|
Choi JH. Proteolytic Biosensors with Functional Nanomaterials: Current Approaches and Future Challenges. BIOSENSORS 2023; 13:171. [PMID: 36831937 PMCID: PMC9953628 DOI: 10.3390/bios13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Proteolytic enzymes are one of the important biomarkers that enable the early diagnosis of several diseases, such as cancers. A specific proteolytic enzyme selectively degrades a certain sequence of a polypeptide. Therefore, a particular proteolytic enzyme can be selectively quantified by changing detectable signals causing degradation of the peptide chain. In addition, by combining polypeptides with various functional nanomaterials, proteolytic enzymes can be measured more sensitively and rapidly. In this paper, proteolytic enzymes that can be measured using a polypeptide degradation method are reviewed and recently studied functional nanomaterials-based proteolytic biosensors are discussed. We anticipate that the proteolytic nanobiosensors addressed in this review will provide valuable information on physiological changes from a cellular level for individual and early diagnosis.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
13
|
Li M, Cheng J, Zheng H, Shi J, Shen Q. Label-free homogeneous electrochemical sensing strategy for microRNA detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Research progress on ratiometric electrochemical sensing of mycotoxins. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
16
|
Guan Y, Huang Y, Li T. Applications of Gelatin in Biosensors: Recent Trends and Progress. BIOSENSORS 2022; 12:670. [PMID: 36140057 PMCID: PMC9496244 DOI: 10.3390/bios12090670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Gelatin is a natural protein from animal tissue with excellent biocompatibility, biodegradability, biosafety, low cost, and sol-gel property. By taking advantage of these properties, gelatin is considered to be an ideal component for the fabrication of biosensors. In recent years, biosensors with gelatin have been widely used for detecting various analytes, such as glucose, hydrogen peroxide, urea, amino acids, and pesticides, in the fields of medical diagnosis, food testing, and environmental monitoring. This perspective is an overview of the most recent trends and progress in the development of gelatin-based biosensors, which are classified by the function of gelatin as a matrix for immobilized biorecognition materials or as a biorecognition material for detecting target analytes.
Collapse
Affiliation(s)
- Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
17
|
Sun T, Li M, Zhao F, Liu L. Surface Plasmon Resonance Biosensors with Magnetic Sandwich Hybrids for Signal Amplification. BIOSENSORS 2022; 12:554. [PMID: 35892451 PMCID: PMC9332597 DOI: 10.3390/bios12080554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 06/01/2023]
Abstract
The conventional signal amplification strategies for surface plasmon resonance (SPR) biosensors involve the immobilization of receptors, the capture of target analytes and their recognition by signal reporters. Such strategies work at the expense of simplicity, rapidity and real-time measurement of SPR biosensors. Herein, we proposed a one-step, real-time method for the design of SPR biosensors by integrating magnetic preconcentration and separation. The target analytes were captured by the receptor-modified magnetic nanoparticles (MNPs), and then the biotinylated recognition elements were attached to the analyte-bound MNPs to form a sandwich structure. The sandwich hybrids were directly delivered to the neutravidin-modified SPR fluidic channel. The MNPs hybrids were captured by the chip through the neutravidin-biotin interaction, resulting in an enhanced SPR signal. Two SPR biosensors have been constructed for the detection of target DNA and beta-amyloid peptides with high sensitivity and selectivity. This work, integrating the advantages of one-step, real-time detection, multiple signal amplification and magnetic preconcentration, should be valuable for the detection of small molecules and ultra-low concentrations of analytes.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Integrated Research Center of Polymer Electromagnetic Materials, Guizhou Education University, Guiyang 550018, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Mengyao Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Feng Zhao
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Integrated Research Center of Polymer Electromagnetic Materials, Guizhou Education University, Guiyang 550018, China;
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| |
Collapse
|
18
|
Feng Y, Liu G, Zhang F, Liu J, La M, Xia N. A General, Label-Free and Homogeneous Electrochemical Strategy for Probing of Protease Activity and Screening of Inhibitor. MICROMACHINES 2022; 13:803. [PMID: 35630268 PMCID: PMC9148143 DOI: 10.3390/mi13050803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023]
Abstract
Proteases play a critical role in regulating various physiological processes from protein digestion to wound healing. Monitoring the activity of proteases and screening their inhibitors as potential drug molecules are of great importance for the early diagnosis and treatment of many diseases. In this work, we reported a general, label-free and homogeneous electrochemical method for monitoring protease activity based on the peptide-copper interaction. Cleavage of peptide substrate results in the generation of a copper-binding chelator peptide with a histidine residue in the first or third position (His1 or His3) at the N-terminal. The redox potential and current of copper coordinated with the product are different from the free copper or the copper complex with the substrate, thus allowing for the detection of protease activity. Angiotensin-converting enzyme (ACE) and thrombin were determined as the model analytes. The label-free and homogeneous electrochemical method can be used for screening protease inhibitors with high simplicity and sensitivity.
Collapse
Affiliation(s)
- Yunxiao Feng
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (F.Z.); (J.L.)
| | - Fan Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (F.Z.); (J.L.)
| | - Jianwen Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (F.Z.); (J.L.)
| | - Ming La
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (F.Z.); (J.L.)
| |
Collapse
|
19
|
Guo Y, Feng L. Highly Sensitive Detection of Carcinoembryonic Antigen via an Electrochemical Platform Fabricated by AuNPs/Streptavidin/Reduced Graphene Oxide. Front Chem 2022; 10:898924. [PMID: 35646828 PMCID: PMC9133321 DOI: 10.3389/fchem.2022.898924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 01/21/2023] Open
Abstract
Tumor markers are one of the important indicators for early cancer diagnosis. As a new analytical method, electrochemical immunosensing analysis has the advantages of high sensitivity, good selectivity, and rapid detection, which is of great significance for the detection of tumor markers. In this work, an AuNP/reduced graphene oxide (AuNP/rGO) composite was synthesized. We used it for electrochemical sensor fabrication with the assistance of the biotin–streptavidin protein (SA) system to further amplify the signal to achieve sensitive detection of carcinoembryonic antigen (CEA). In addition, AuNPs have been incorporated due to their good electrical conductivity and biocompatibility, which can accelerate electron transfer at the electrode interface and improve the loading capacity to capture antibodies. The fabricated AuNPs/SA/rGO has a large working surface area and high material utilization ratio, which improves the catalytic capacity of H2O2 reduction and effectively amplifies the current signal. The linear range of the response current signal of the sensor toward the CEA concentration is 20 fg/ml to 200 ng/ml, and the limit of detection can achieve 6.2 fg/ml. In addition, the fabricated immunosensor has good reproducibility, selectivity, and stability.
Collapse
|
20
|
Zhang Q, Liu G, Ou L. Electrochemical Biosensor for the Detection of SARS-CoV-2 Main Protease and Its Inhibitor Ebselen. INT J ELECTROCHEM SC 2022; 17:220421. [PMID: 37359208 PMCID: PMC10276345 DOI: 10.20964/2022.04.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 10/14/2023]
Abstract
This work reported an electrochemical method for the detection of SARS-CoV-2 major protease (Mpro). Specifically, ferrocene (Fc)-labeled peptide substrates were immobilized on the gold nanoparticles (AuNPs)-modified electrode. Cleavage of the peptides by Mpro led to the release of Fc tags and the decrease of the electrochemical signals. The analytical performance of the biosensor for analysis of Mpro was investigated. Inhibiting the activity of Mpro prevented the cleavage of the peptide substrates. The method was successfully used to evaluate the inhibition efficiency of a well-known inhibitor.
Collapse
Affiliation(s)
- Qiongyu Zhang
- School of Fundamental Sciences, Yongzhou Vocational Technical College, Yongzhou 425100, Hunan, People's Republic of China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People's Republic of China
| | - Lingbin Ou
- School of Fundamental Sciences, Yongzhou Vocational Technical College, Yongzhou 425100, Hunan, People's Republic of China
| |
Collapse
|
21
|
Li G, Niu P, Ge S, Cao D, Sun A. SERS Based Lateral Flow Assay for Rapid and Ultrasensitive Quantification of Dual Laryngeal Squamous Cell Carcinoma-Related miRNA Biomarkers in Human Serum Using Pd-Au Core-Shell Nanorods and Catalytic Hairpin Assembly. Front Mol Biosci 2022; 8:813007. [PMID: 35223986 PMCID: PMC8878268 DOI: 10.3389/fmolb.2021.813007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Non-invasive early diagnosis is of great significant in disease pathologic development and subsequent medical treatments, and microRNA (miRNA) detection has attracted critical attention in early cancer screening and diagnosis. However, it was still a challenge to report an accurate and sensitive method for the detection of miRNA during cancer development, especially in the presence of its analogs that produce intense background noise. Herein, we developed a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) biosensor, assisted with catalytic hairpin assembly (CHA) amplification strategy, for the dynamic monitoring of miR-106b and miR-196b, associated with laryngeal squamous cell carcinoma (LSCC). In the presence of target miRNAs, two hairpin DNAs could self-assemble into double-stranded DNA, exposing the biotin molecules modified on the surface of palladium (Pd)-gold (Au) core-shell nanorods (Pd-AuNRs). Then, the biotin molecules could be captured by the streptavidin (SA), which was fixed on the test lines (T1 line and T2 line) beforehand. The core-shell spatial structures and aggregation Pd-AuNRs generated abundant active "hot spots" on the T line, significantly amplifying the SERS signals. Using this strategy, the limits of detections were low to aM level, and the selectivity, reproducibility, and uniformity of the proposed SERS-LFA biosensor were satisfactory. Finally, this rapid analysis strategy was successfully applied to quantitatively detect the target miRNAs in clinical serum obtained from healthy subjects and patients with LSCC at different stages. The results were consistent with the quantitative real-time PCR (qRT-PCR). Thus, the CHA-assisted SERS-LFA biosensor would become a promising alternative tool for miRNAs detection, which showed a tremendous clinical application prospect in diagnosing LSCC.
Collapse
Affiliation(s)
- Guang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ping Niu
- Departments of Otolaryngology, The Affiliated Hospital of Shandong First Medical University, Qingzhou People’s Hospital, Qingzhou, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dawei Cao
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Aidong Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Xia N, Sun T, Liu L, Tian L, Sun Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta 2022; 237:122949. [PMID: 34736675 DOI: 10.1016/j.talanta.2021.122949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
Heterogeneous analysis has great application prospects in the detection of post-translational modification (PTM) enzymes with the advantages of signal enhancement, less sample demand, and high sensitivity and selectivity. Nevertheless, once the substrate was fixed on a solid interface, the steric hindrance might limit the approaching of catalytic center to the substrate, thus reducing the efficiency of PTM. Herein, we suggested that the avidin-modified interface could be used to develop heterogeneous sensing platforms with biotin-labeled substrates as the probes, in which the enzymatic PTM was performed in solution and the heterogeneous assay was conducted on a solid surface. The sensing strategy integrates the advantages but overcomes the defects of both homogeneous and heterogeneous assays. Protein kinase A (PKA) and histone acetyltransferase (HAT) were determined as the examples by using sequence-specific peptide substrates. The signal changes were monitored by HRP-based colorimetric assay and antibody-amplified surface plasmon resonance (SPR). The methods were used for analysis of cell lysates and evaluation of inhibition efficiency with satisfactory results. The strategy can be used for the detection of a variety of biological enzymes and provide a new idea for the design of various heterogeneous biosensors. Thus, this work should be of great significance to the popularization and practical application of biosensors.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Ting Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China; School of Chemistry and Materials Science, Guizhou Education University, GaoXin Road 115, Wudang District, Guizhou, 550000, PR China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China.
| | - Linxu Tian
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Zhifang Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
23
|
Chang Y, Xia N, Huang Y, Sun Z, Liu L. In Situ Assembly of Nanomaterials and Molecules for the Signal Enhancement of Electrochemical Biosensors. NANOMATERIALS 2021; 11:nano11123307. [PMID: 34947656 PMCID: PMC8705329 DOI: 10.3390/nano11123307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
The physiochemical properties of nanomaterials have a close relationship with their status in solution. As a result of its better simplicity than that of pre-assembled aggregates, the in situ assembly of nanomaterials has been integrated into the design of electrochemical biosensors for the signal output and amplification. In this review, we highlight the significant progress in the in situ assembly of nanomaterials as the nanolabels for enhancing the performances of electrochemical biosensors. The works are discussed based on the difference in the interactions for the assembly of nanomaterials, including DNA hybridization, metal ion-ligand coordination, metal-thiol and boronate ester interactions, aptamer-target binding, electrostatic attraction, and streptavidin (SA)-biotin conjugate. We further expand the range of the assembly units from nanomaterials to small organic molecules and biomolecules, which endow the signal-amplified strategies with more potential applications.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
24
|
Chang Y, Ma X, Sun T, Liu L, Hao Y. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021; 234:122649. [PMID: 34364458 DOI: 10.1016/j.talanta.2021.122649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
In the classical heterogeneous electrochemical assay, phosphorylation of peptide substrate is usually performed on the solid-liquid surface. However, immobilization of probe on the solid surface may limit the interaction between the reaction site of probe and the active center of kinase due to the steric hindrance effect. In this work, we proposed a heterogeneous electrochemical method for kinase detection, in which the probe is immobilization-free during the phosphorylation reaction. A biotinylated peptide was used as the kinase substrate. After phosphorylation, the biotinylated phosphopeptide was captured by the neutravidin (NA)-modified electrode through the avidin-biotin interaction. The phosphate groups on the electrode surface were then recognized by the conjugates preformed between biotinylated Phos-tag™ (Bio-tag-Phos) and ferrocene (Fc)-capped NA-modified gold nanoparticle (Fc-AuNP-NA). The method integrates the advantages of homogeneous reaction and heterogeneous detection with high simplicity, sensitivity and specificity. The strategy can be applied to design other heterogeneous biosensors without the immobilization of probe during the enzyme catalyzed reaction.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiaohua Ma
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China
| | - Ting Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| |
Collapse
|
25
|
Surface Plasmon Resonance for Protease Detection by Integration of Homogeneous Reaction. BIOSENSORS-BASEL 2021; 11:bios11100362. [PMID: 34677318 PMCID: PMC8534046 DOI: 10.3390/bios11100362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
The heterogeneous assays of proteases usually require the immobilization of peptide substrates on the solid surface for enzymatic hydrolysis reactions. However, immobilization of peptides on the solid surface may cause a steric hindrance to prevent the interaction between the substrate and the active center of protease, thus limiting the enzymatic cleavage of the peptide. In this work, we reported a heterogeneous surface plasmon resonance (SPR) method for protease detection by integration of homogeneous reaction. The sensitivity was enhanced by the signal amplification of streptavidin (SA)-conjugated immunoglobulin G (SA-IgG). Caspase-3 (Cas-3) was determined as the model. A peptide labeled with two biotin tags at the N- and C-terminals (bio-GDEVDGK-bio) was used as the substrate. In the absence of Cas-3, the substrate peptide was captured by neutravidin (NA)-covered SPR chip to facilitate the attachment of SA-IgG by the avidin-biotin interaction. However, once the peptide substrate was digested by Cas-3 in the aqueous phase, the products of bio-GDEVD and GK-bio would compete with the substrate to bond NA on the chip surface, thus limiting the attachment of SA-IgG. The method integrated the advantages of both heterogeneous and homogeneous assays and has been used to determine Cas-3 inhibitor and evaluate cell apoptosis with satisfactory results.
Collapse
|
26
|
Song Z, Ma Y, Chen M, Ambrosi A, Ding C, Luo X. Electrochemical Biosensor with Enhanced Antifouling Capability for COVID-19 Nucleic Acid Detection in Complex Biological Media. Anal Chem 2021; 93:5963-5971. [PMID: 33797892 PMCID: PMC8043074 DOI: 10.1021/acs.analchem.1c00724] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022]
Abstract
Biofouling caused by the accumulation of biomolecules on sensing surfaces is one of the major problems and challenges to realize the practical application of electrochemical biosensors, and an effective way to counter this problem is the construction of antifouling biosensors. Herein, an antifouling electrochemical biosensor was constructed based on electropolymerized polyaniline (PANI) nanowires and newly designed peptides for the detection of the COVID-19 N-gene. The inverted Y-shaped peptides were designed with excellent antifouling properties and two anchoring branches, and their antifouling performances against proteins and complex biological media were investigated using different approaches. Based on the biotin-streptavidin affinity system, biotin-labeled probes specific to the N-gene (nucleocapsid phosphoprotein) of COVID-19 were immobilized onto the peptide-coated PANI nanowires, forming a highly sensitive and antifouling electrochemical sensing interface for the detection of COVID-19 nucleic acid. The antifouling genosensor demonstrated a wide linear range (10-14 to 10-9 M) and an exceptional low detection limit (3.5 fM). The remarkable performance of the genosensor derives from the high peak current of PANI, which is chosen as the sensing signal, and the extraordinary antifouling properties of designed peptides, which guarantee accurate detection in complex systems. These crucial features represent essential elements for future rapid and decentralized clinical testing.
Collapse
Affiliation(s)
| | | | - Min Chen
- Key Laboratory of Optic-Electric Sensing
and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory
of Biochemical Analysis, Key Laboratory of Analytical Chemistry for
Life Science in Universities of Shandong, College of Chemistry and
Molecular Engineering, Qingdao University
of Science and Technology, Qingdao 266042, PR China
| | - Adriano Ambrosi
- Key Laboratory of Optic-Electric Sensing
and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory
of Biochemical Analysis, Key Laboratory of Analytical Chemistry for
Life Science in Universities of Shandong, College of Chemistry and
Molecular Engineering, Qingdao University
of Science and Technology, Qingdao 266042, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-Electric Sensing
and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory
of Biochemical Analysis, Key Laboratory of Analytical Chemistry for
Life Science in Universities of Shandong, College of Chemistry and
Molecular Engineering, Qingdao University
of Science and Technology, Qingdao 266042, PR China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing
and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory
of Biochemical Analysis, Key Laboratory of Analytical Chemistry for
Life Science in Universities of Shandong, College of Chemistry and
Molecular Engineering, Qingdao University
of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|