1
|
Deng J, Zhao S, Xie K, Liu C, Sheng C, Li J, Dai B, Wan S, Li L, Sun J. Spherical DNA Nanomotors Enable Ultrasensitive Detection of Active Enzymes in Extracellular Vesicles for Cancer Diagnosis. Angew Chem Int Ed Engl 2024:e202417165. [PMID: 39513555 DOI: 10.1002/anie.202417165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Enzymes encapsulated in extracellular vesicles (EVs) hold promise as biomarkers for early cancer diagnosis. However, precise measurement of their catalytic activities within EVs remains a notable challenge. Here, we report an enzymatically triggered spherical DNA nanomotor (EDM) that enables one-pot, cascaded, and highly sensitive analysis of the activity of EV-associated or free apurinic/apyrimidinic endonuclease 1 (APE1, a key enzyme in base excision repair) across various biological samples. The EDM capitalizes on APE1-triggered activation of DNAzyme (Dz) and its autonomous cleavage of substrates to achieve nonlinear signal amplification. Using EDM, we demonstrate a strong correlation between APE1 activity in EVs and that of their parental cancer cells. Additionally, EV APE1 mirrors the fluctuation of cellular APE1 activity in response to chemotherapy-induced DNA damage. In a pilot clinical study (n=63), the EDM-based assay reveals that more than 80 % of active APE1 in serum samples is EV-encapsulated. Notably, EV APE1 can differentiate early prostate cancer (PCa) patients from healthy donors (HDs) with an overall accuracy of 92 %, outperforming free APE1 in sera. We anticipate that EDM will become a versatile tool for quantifying EV-associated enzymes.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xie
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhong Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shuo Wan
- Foundation for Applied Molecular Evolution Alachua, Florida, 32615, United States
| | - Lele Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Cho H, Oh DE, Côté S, Lee CS, Kim TH. Orientation-Guided Immobilization of Probe DNA on swCNT-FET for Enhancing Sensitivity of EcoRV Detection. NANO LETTERS 2024; 24:1901-1908. [PMID: 38147528 DOI: 10.1021/acs.nanolett.3c03877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We present a novel approach that integrates electrical measurements with molecular dynamics (MD) simulations to assess the activity of type-II restriction endonucleases, specifically EcoRV. Our approach employs a single-walled carbon nanotube field-effect transistor (swCNT-FET) functionalized with the EcoRV substrate DNA, enabling the detection of enzymatic cleavage events. Notably, we leveraged the methylene blue (MB) tag as an "orientation guide" to immobilize the EcoRV substrate DNA in a specific direction, thereby enhancing the proximity of the DNA cleavage reaction to the swCNT surface and consequently improving the sensitivity in EcoRV detection. We conducted computational modeling to compare the conformations and electrostatic potential (ESP) of MB-tagged DNA with its MB-free counterpart, providing strong support for our electrical measurements. Both conformational and ESP simulations exhibited robust agreement with our experimental data. The inhibitory efficacy of the EcoRV inhibitor aurintricarboxylic acid (ATA) was also evaluated, and the selectivity of the sensing device was examined.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal H2 V 0B3, Canada
- Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme J7Z 4 V2, Canada
| | - Chang-Seuk Lee
- Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
3
|
Zou H, Gong L, Xu Y, Ni H, Jiang Y, Li Y, Huang C, Liu Q. Plasmonic scattering imaging of single Cu 2-xSe nanoparticle for Hg 2+ detection. Talanta 2023; 261:124663. [PMID: 37209587 DOI: 10.1016/j.talanta.2023.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The development of new efficient contrast nanoprobe has been greatly concerned in the field of scattering imaging for sensitive and accurate detection of trace analytes. In this work, the non-stoichiometric Cu2-xSe nanoparticle with typical localized surface plasmon resonance (LSPR) properties originating from their copper deficiency as a plasmonic scattering imaging probe was developed for sensitive and selective detection of Hg2+ under dark-field microscopy. Hg2+ can compete with Cu(I)/Cu(II) which were sources of optically active holes coexisting in these Cu2-xSe nanoparticles for its higher affinity with Se2-. The plasmonic properties of Cu2-xSe were adjusted effectively. Thus, the color scattering images of Cu2-xSe nanoparticles was changed from blue to cyan, and the scattering intensity was obviously enhanced with the dark-field microscopy. There was a linear relationship between the scattering intensity enhancement and the Hg2+ concentration in the range of 10-300 nM with a low detection limit of 1.07 nM. The proposed method has good potential for Hg2+ detection in the actual water samples. This work provides a new perspective on applying new plasmonic imaging probe for the reliable determination of trace heavy metal substances in the environment at a single particle level.
Collapse
Affiliation(s)
- Hongyan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lijun Gong
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Yue Xu
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Huanhuan Ni
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yongjian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanfang Li
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Zhang X, Zhang L, Bie H, Xu J, Yuan Y, Jia L. Intelligent visual detection of OTC enabled by a multicolor fluorescence nanoprobe: Europium complex functionalized carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122867. [PMID: 37216821 DOI: 10.1016/j.saa.2023.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
It is of great significance to realize ultra-sensitive and visual detection of oxytetracycline (OTC) residues, especially for public health and environmental safety. In this study, a multicolor fluorescence sensing platform (CDs-Cit-Eu) for OTC detection was constructed by using rare earth europium complex functionalized carbon dots (CDs). The blue-emitting CDs (λem = 450 nm) prepared by one-step hydrothermal method using nannochloropsis were not only the scaffold of Eu3+ ion coordination, but also the recognition unit of OTC. After adding OTC to the multicolor fluorescent sensor, the emission intensity of CDs decreased slowly, and the emission intensity of Eu3+ ions (λem = 617 nm) enhanced significantly, accompanying by a significant color change of the nanoprobe from blue to red. The detection limit of the probe for OTC was calculated to be 3.5 nM, manifesting ultra-high sensitivity towards OTC detection. In addition, OTC detection in real samples (honey, lake water, tap water) was successfully achieved. Moreover, a semi-hydrophobic luminescent film SA/PVA/CDs-Cit-Eu was also prepared for OTC detection. With the help of smartphone color recognition APP, real-time intelligent detection of OTC was realized.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China.
| | - Hongyan Bie
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Yingqi Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China.
| |
Collapse
|
5
|
Non-amplification on-spot identifying the sex of dioecious kiwi plants by a portable Raman device. Talanta 2023; 258:124447. [PMID: 36921366 DOI: 10.1016/j.talanta.2023.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The kiwi plant is dioecious, and its sex is generally identified from flower morphology at blossoming, which takes several years. It is quite necessary but challenging to on-spot identify the plant sex in juvenile stage. Here the target DNA was obtained by screening the Friendly boy (FrBy) gene which is sex-related for different kiwi plant species. Its complementary sequence was divided into two parts as primer DNA and further attached to different gold nanoparticles (GNPs). The connection between target DNA and primer DNA will promote the formation of plasmonic dimers. Dark field microscopy (DFM) can distinguish particles in different aggregation states. Various conditions were optimized based on the standard of increasing the proportion of dimers while reducing that of large aggregates. Furthermore, two Raman reporters (RR) are separately labeled on the nanoprobes, and the plasmonic dimers lead to a tremendous Raman enhancement of two reporters located at the dimer nanogap. Double-blind tests proved the feasibility of this method on the actual samples of kiwi plant leaves. Our SERS method is sensitive, specific, and reliable for rapid sex identification analysis at the kiwi seeding stage, with great promise for decision-making in field management.
Collapse
|
6
|
Zhang S, Yao L, Lv X, Lu M, Gao F, Zhang L, Zhao S, Hu S. Engineered Cancer Cells as Signal Probes for Fluorescence-Assisted Digital Counting Analysis. Anal Chem 2023; 95:4227-4234. [PMID: 36795965 DOI: 10.1021/acs.analchem.2c05684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Fluorescence-assisted digital counting analysis allowed sensitive quantification of targets by measuring individual fluorescent labels. However, traditional fluorescent labels suffered from low brightness, small size, and sophisticated preparation procedures. Herein, engineering fluorescent dye-stained cancer cells with magnetic nanoparticles were proposed to construct single-cell probes for fluorescence-assisted digital counting analysis by quantifying the target-dependent binding or cleaving events. Various engineering strategies of cancer cells including biological recognition and chemical modification were developed for rationally designing single-cell probes. Introduction of suitable recognition elements into single-cell probes allowed digital quantification of each target-dependent event via counting the colored single-cell probes in the representative image taken using a confocal microscope. The reliability of the proposed digital counting strategy was corroborated by traditional optical microscopy- and flow cytometry-dependent counting technologies. The advantages of single-cell probes, including high brightness, big size, ease of preparation, and magnetic separation, contributed to the sensitive and selective analysis of targets of interest. As proof-to-concept assays, indirect analysis of exonuclease III (Exo III) activity, as well as direct quantitation of cancer cells, were investigated, and the potential in biological sample analysis was also assessed. This sensing strategy will open a new avenue for the development of biosensors.
Collapse
Affiliation(s)
- Shengkai Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Lijia Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaofei Lv
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Meijun Lu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
7
|
Zou H, Gu X, Xia C, Cheng R, Huang C, Li Y, Gao P. Gold triangular nanoplates with edge effect for reaction monitoring under dark-field microscopy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Hu X, Cheng X, Wang Z, Zhao J, Wang X, Yang W, Chen Y. Multiplexed and DNA amplification-free detection of foodborne pathogens in egg samples: Combining electrical resistance-based microsphere counting and DNA hybridization reaction. Anal Chim Acta 2022; 1228:340336. [DOI: 10.1016/j.aca.2022.340336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/01/2022]
|
9
|
Wang X, Liu S, Xiao R, Hu J, Li L, Ning Y, Lu F. Graphene-oxide-based bioassay for the fluorometric determination of agrC gene transcription in methicillin-resistant Staphylococcus aureus that uses nicking-enzyme-assisted target recycling and a hybridization chain reaction. Talanta 2022; 250:123714. [PMID: 35779362 DOI: 10.1016/j.talanta.2022.123714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Herein, we report the development of a graphene-oxide-based (GO-based) fluorescent bioassay for determining agrC gene transcription (mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). The design is based on nicking-enzyme-assisted (Nb.BbvcI-assisted) target recycling amplification (NATR) and a hybridization chain reaction (HCR). The system consists of a helper probe (HP), a molecular beacon (MB) probe, four hairpins, and endonuclease Nb.BbvcI, which plays a role in target recycling and signal amplification. In the absence of the target, all of the carboxyfluorescein-labeled (FAM-labeled) hairpins are adsorbed through π-stacking interactions onto the surface of GO, resulting in FAM signal quenching. When the target is added, three nucleic acid chains hybridize together to form a triple complex that is recognized by Nb.BbvCI. The MB probe is then cleaved by Nb.BbvCI to generate an HP/target complex and two new DNA fragments; the former is hybridized to another MB probe and enters the next round of reaction. The two newly reproduced DNA fragments induce a HCR with the assistance of hairpins 1-4 to create double-stranded DNA (dsDNA) products. These dsDNA products are repelled by GO and generate strong fluorescence at excitation/emission wavelengths of 480/514 nm. Importantly, synergy between FAM and the dsDNA-SYBR Green I duplex structure led to significantly amplified fluorescence and enhanced sensitivity. The bioassay showed a detection limit of 7.5 fM toward the target and a good linearity in the 10 fM to 100 pM range. The developed method was applied to monitor biofilm formation and study the mechanism of drug action, with satisfactory results obtained.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Rong Xiao
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Ling Li
- Experimental Center of Molecular Biology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
10
|
Liu MH, Wang CR, Liu WJ, Xu Q, Zhang CY. Development of a single quantum dot-mediated FRET biosensor for amplification-free detection of ten-eleven translocation 2. Talanta 2021; 239:123135. [PMID: 34920263 DOI: 10.1016/j.talanta.2021.123135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Ten-eleven translocation (TET) family proteins play key roles in multiple cellular processes by mediating the oxidation of 5-methylcytosine to directly participate in DNA demethylation, and often aberrantly expressed in various diseases. In this research, we develop a single-quantum-dot (QD)-mediated fluorescence resonance energy transfer (FRET) biosensor for amplification-free measurement of ten-eleven translocation 2 (TET2). When TET2 is present, it catalyzes the oxidation of 5-vinylcytosine in dsDNA to 5-formylmethylcytosine, and the subsequent labeling of dsDNA with Cy5 generates a biotinylated Cy5-dsDNA complex. Biotinylated Cy5-dsDNA complexes are conjugated to the streptavidin-coated 605QDs to obtain a Cy5-dsDNA-605QD nanostructures, inducing FRET from 605QD to Cy5. FRET signal can be simply measured by single-molecule counting. This biosensor enables homogeneous detection of TET2 with a limit of detection (LOD) of 0.042 ng/μL, and it can accurately measure cellular TET2 down to 1 cell. Moreover, this biosensor can be used to screen TET2 inhibitors, offering a new platform for TET2-related medical research and clinical diagnostics.
Collapse
Affiliation(s)
- Ming-Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Chuan-Rui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|