1
|
Wang W, Fang J, Fan Y, Wang Q, Chen Y, Ruan S. The regulation of ZIF-derived ZnO nanocages by Yb 2O 3 for high-performance triethylamine sensing and fish freshness assessment. Talanta 2025; 288:127757. [PMID: 39965381 DOI: 10.1016/j.talanta.2025.127757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 02/20/2025]
Abstract
The development of specialized high-performance sensors is an urgent requirement in the chemical and food safety fields. Yb2O3 is a trivalent rare earth oxide with catalytic effect, which has exploration and research value as a dopant for gas detection. Here, we constructed a high-performance triethylamine sensor using Yb2O3-regulated ZIF-derived ZnO nanocages. Characterization results exhibit the increase of the oxygen vacancies and chemisorbed oxygen in the composite material. Density functional theory (DFT) calculation results show that the Yb2O3 (222) surface has stronger adsorption and activation effects on oxygen molecules and more charge transfer than ZnO. Combined with the energy band modulation and the catalytic effect of the intrinsic oxygen vacancies of Yb2O3 on N-H bonds, the sensor has significantly lower operating temperature of 120 °C (60 °C lower than ZnO), higher response of 494.21 (20.34 times higher than ZnO), while also having better selectivity and low detection limit (488 ppb) for triethylamine. Finally, we applied the sensor to the freshness assessment of crucian carp and the sensor based on Yb2O3-ZnO composite showed good time linear relationship.
Collapse
Affiliation(s)
- Wei Wang
- College of Electronic Science & Engineering, Jilin University, Changchun 130012, PR China
| | - Jian Fang
- College of Electronic Science & Engineering, Jilin University, Changchun 130012, PR China
| | - Yizhuo Fan
- College of Electronic Science & Engineering, Jilin University, Changchun 130012, PR China
| | - Qilin Wang
- College of Electronic Science & Engineering, Jilin University, Changchun 130012, PR China
| | - Yu Chen
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China.
| | - Shengping Ruan
- College of Electronic Science & Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Yan W, Liu Y, Bai Y, Chen Y, Zhou H, Ahmad W. Intelligent MEMS Sensor Based on an Oxidized Medium-Entropy Alloy (FeCoNi) for H 2 and CO Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49474-49483. [PMID: 39231248 DOI: 10.1021/acsami.4c07782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In this paper, we present the design and evaluation of an intelligent MEMS sensor employing the oxidized medium-entropy alloy (O-MEA) of FeCoNi as the gas-sensing material. Due to the specific catalytic exothermic reaction of the O-MEA on H2/CO, the sensor shows great selectivity for H2 and CO at 150 °C of the integrated microheater in the MEMS device, with the theoretical detection limit of 0.3 ppm for H2 and 0.29 ppm for CO. The MEMS heater, capable of instantaneous temperature changes in pulse operation mode, offers a novel approach for thermal modulation of the sensor, which is crucial for the adsorption and reaction of H2/CO molecules on the sensing layer surface. Consequently, we investigate the gas-sensing capabilities of the sensor under pulse heating modes (PHMs) of the MEMS heater and then propose the gas-sensing mechanism. The results indicate that PHMs significantly not only reduce the operating temperature and power consumption but also enhance the sensor's functionality by providing multivariable response signals, paving the way for intelligent gas detection. Based on the high selectivity to H2 and CO, transforming the transient sensing curves into two-dimensional images via Gramian Angular Field (GAF) model and subsequent modeling using a convolutional neural network (CNN) algorithm, we have realized efficient and intelligent recognition of H2 and CO. This work provides insight for the development of low-power, high-performance MEMS gas sensors and further intelligence of individual MEMS sensors.
Collapse
Affiliation(s)
- Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yun Liu
- Faculty of Information, Liaoning University, Shenyang 110036, China
| | - Yan Bai
- Faculty of Information, Liaoning University, Shenyang 110036, China
| | - Yulong Chen
- Industrialization Center of Micro & Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Houpan Zhou
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Waqar Ahmad
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou 324000, China
| |
Collapse
|
3
|
Cheng K, Tian X, Yuan S, Feng Q, Wang Y. Research Progress on Ammonia Sensors Based on Ti 3C 2T x MXene at Room Temperature: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4465. [PMID: 39065863 PMCID: PMC11280721 DOI: 10.3390/s24144465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Ammonia (NH3) potentially harms human health, the ecosystem, industrial and agricultural production, and other fields. Therefore, the detection of NH3 has broad prospects and important significance. Ti3C2Tx is a common MXene material that is great for detecting NH3 at room temperature because it has a two-dimensional layered structure, a large specific surface area, is easy to functionalize on the surface, is sensitive to gases at room temperature, and is very selective for NH3. This review provides a detailed description of the preparation process as well as recent advances in the development of gas-sensing materials based on Ti3C2Tx MXene for room-temperature NH3 detection. It also analyzes the advantages and disadvantages of various preparation and synthesis methods for Ti3C2Tx MXene's performance. Since the gas-sensitive performance of pure Ti3C2Tx MXene regarding NH3 can be further improved, this review discusses additional composite materials, including metal oxides, conductive polymers, and two-dimensional materials that can be used to improve the sensitivity of pure Ti3C2Tx MXene to NH3. Furthermore, the present state of research on the NH3 sensitivity mechanism of Ti3C2Tx MXene-based sensors is summarized in this study. Finally, this paper analyzes the challenges and future prospects of Ti3C2Tx MXene-based gas-sensitive materials for room-temperature NH3 detection.
Collapse
Affiliation(s)
- Kaixin Cheng
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Xu Tian
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Shaorui Yuan
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Qiuyue Feng
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming 650091, China; (K.C.); (X.T.); (S.Y.); (Q.F.)
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Gao W, Bai Y, Wang X, Fu H, Zhao P, Zhu P, Yu J. Self-standing perylene diimide covalent organic framework membranes for trace TMA sensing at room temperature. J Colloid Interface Sci 2024; 663:262-269. [PMID: 38401446 DOI: 10.1016/j.jcis.2024.02.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The unprecedented demand for highly selective, real-time monitoring and low-power gas sensors used in food quality control has been driven by the increasing popularity of the Internet of Things (IoT). Herein, the self-standing perylene diimide based covalent organic framework membranes (COFMPDI-THSTZ) were prepared via liquid-liquid interfacial synthesis method. By incorporating the perylene diimide monomer into the COFM through molecular engineering, COFMPDI-THSTZ based sensor demonstrated an outstanding trimethylamine (TMA)-sensing performance at room temperature. Benefited from the TMA-accessible self-standing membrane morphology, π-electron delocalization effect, and extensive surface area with continuous nanochannels, the specific and highly sensitive TMA measurement has been achieved within the range of 0.03-400 ppm, with an exceptional theoretical detection limit as low as 10 ppb. Moreover, the primary internal mechanism of COFMPDI-THSTZ for this efficient TMA detection was investigated through in-situ FT-IR spectra, thereby directly elucidating that the chemisorption interaction of oxygen modulated the depletion layers on sensing material surface, resulting in alterations in sensor resistance upon exposure to the target gas. For practical usage, COFMPDI-THSTZ based sensor exhibited exceptional real-time in-situ sensing capabilities, further confirmed their potential for application in dynamic prediction evaluation of marine fish products and quality monitoring in IoT.
Collapse
Affiliation(s)
- Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xinlei Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongyu Fu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
5
|
Chen Y, Han D, Wang Z, Gu F. Interface Defects and Carrier Regulation in MOF-Derived Co 3O 4/In 2O 3 Composite Materials for Enhanced Selective Detection of HCHO. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659088 DOI: 10.1021/acsami.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Gas sensors for real-time monitoring of low HCHO concentrations have promising applications in the field of health protection and air treatment, and this work reports a novel resistive gas sensor with high sensitivity and selectivity to HCHO. The MOF-derived hollow In2O3 was mixed with ZIF-67(Co) and calcined twice to obtain a hollow Co3O4/In2O3 (hereafter collectively termed MZO-6) composite enriched with oxygen vacancies, and tests such as XPS and EPR proved that the strong interfacial electronic coupling increased the oxygen vacancies. The gas-sensitive test results show that the hollow composite MZO-6 with abundant oxygen vacancies has a higher response value (11,003) to 10 ppm of HCHO and achieves a fast response/recovery time (11/181 s) for HCHO at a lower operating temperature (140 °C). The MZO-6 material significantly enhances the selectivity to HCHO and reduces the interference of common pollutant gases such as ethanol, acetone, and xylene. There is no significant fluctuation of resistance and response values in the 30-day long-term stability test, and the material has good stability. The synergistic effect of the heterostructure and oxygen vacancies altered the formaldehyde adsorption intermediate pathway and reduced the reaction activation energy, enhancing the HCHO responsiveness and selectivity of the MZO-6 material.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Zhao Y, Guo X, Sun H, Tao L. Recent Advances in Flexible Wearable Technology: From Textile Fibers to Devices. CHEM REC 2024; 24:e202300361. [PMID: 38362667 DOI: 10.1002/tcr.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Smart textile fabrics have been widely investigated and used in flexible wearable electronics because of their unique structure, flexibility and breathability, which are highly desirable with integrated multifunctionality. Recent years have witnessed the rapid development of textile fiber-based flexible wearable devices. However, the pristine textile fibers still can't meet the high standards for practical flexible wearable devices, which calls for the development of some effective modification strategies. In this review, we summarize the recent advances in the flexible wearable devices based on the textile fibers, putting special emphasis on the design and modifications of textile fibers. In addition, the applications of textile fibers in various fields and the critical role of textile fibers are also systematically discussed, which include the supercapacitors, sensors, triboelectric nanogenerators, thermoelectrics, and other self-powered electronic devices. Finally, the main challenges that should be overcome and some effective solutions are also manifested, which will guide the future development of more effective textile fiber-based flexible wearable devices.
Collapse
Affiliation(s)
- Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
- Jiangsu Key Laboratory of High Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Jiangsu Province, Changzhou, 213164, China
- Jiangsu Ruilante New Materials Co., Ltd., Jiangsu Province, YangZhou, 211400, China
| | - Xuefeng Guo
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
| | - Hong Sun
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
| | - Lei Tao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Jiangsu Province, Changzhou, 213164, China
- Jiangsu Ruilante New Materials Co., Ltd., Jiangsu Province, YangZhou, 211400, China
| |
Collapse
|
7
|
Liu R, Cheng SC, Ng CO, Xiao Y, Tang KM, Tong KM, Lei NY, Ko CC. An Ir(III) cyclometalate-functionalized molecularly imprinted polymer: photophysics, photochemistry and chemosensory applications. Dalton Trans 2023; 52:15071-15077. [PMID: 37812405 DOI: 10.1039/d3dt02347h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A luminescent trimethylamine (TMA) sensor, PTMA-Ir, has been designed and synthesized through immobilizing a phosphorescent iridium(III) complex on a TMA-imprinted polymer. Detailed study shows that the quenching of phosphorescence of PTMA-Ir can serve as a reporter for the binding of TMA on the imprinting sites, thus providing a sensitive, selective, and rapid detection of TMA in both aqueous solutions and gaseous states. Loading PTMA-Ir on filter paper produced a deposition T-Ir, the phosphorescence of which is quenched within 5 s upon exposure to TMA vapor with detection limits of 9.0 ± 0.1 ppm under argon and 15.0 ± 0.1 ppm in an air atmosphere. This work provided an effective method for establishing an imprinting polymer-immobilized luminescent amine sensor.
Collapse
Affiliation(s)
- Ruoyang Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Shun-Cheung Cheng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Chi-On Ng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Yelan Xiao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Kin-Man Tang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Ka-Ming Tong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Ngai-Yu Lei
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Chi-Chiu Ko
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Elsherbiny AS, Rady A, Abdelhameed RM, Gemeay AH. Efficiency and selectivity of cost-effective Zn-MOF for dye removal, kinetic and thermodynamic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106860-106875. [PMID: 36847947 PMCID: PMC10611857 DOI: 10.1007/s11356-023-25919-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Green synthesis of metal-organic frameworks (MOFs) has attracted a lot of attention as a crucial step for practical industrial applications. In this work, green synthesis of zinc(II) metal-organic framework (Zn-MOF) has been carried out at room temperature. The Zn metal (node) was extracted from spent domestic batteries, and the linker was benzene di-carboxylic acid (BDC). The characterization of the as-prepared Zn-MOF was accomplished by PXRD, FT-IR spectroscopy, SEM, TEM, TGA, and nitrogen adsorption at 77 K. All the characterization techniques strongly supported that as-synthesized Zn-MOF using metallic solid waste Zn is similar to that was reported in the literature. The as-prepared Zn-MOF was stable in water for 24 h without any changes in its functional groups and framework. The prepared Zn-MOF was tested for the adsorption of three dyes, two anionic dyes, aniline blue (AB), and orange II (O(II)) as well as methylene blue (MB), an example of cationic dye from aqueous solution. AB has the highest equilibrium adsorbed amount, qe, of value 55.34 mg g-1 at pH = 7 and 25 °C within 40 min. Investigation of the adsorption kinetics indicated that these adsorption processes could be described as a pseudo-second-order kinetic model. Furthermore, the adsorption process of the three dyes was described well by the Freundlich isotherm model. According to the thermodynamic parameters, the adsorption of AB on the prepared Zn-MOF was an endothermic and spontaneous process. In contrast, it was non-spontaneous and exothermic for the uptake of O(II) and MB. This study complements the business case development model of "solid waste to value-added MOFs."
Collapse
Affiliation(s)
- Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ahmed Rady
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ali H Gemeay
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
9
|
Yan X, Yang X, Sun Z, Sun C, Hu Z, Zhang Y, Pan G, Guo L, Qi Y, Cheng Y. PtPd NPs-functionalized metal-organic framework-derived α-Fe 2O 3 porous spindles for efficient low-temperature detection of triethylamine. Dalton Trans 2023; 52:13367-13378. [PMID: 37674413 DOI: 10.1039/d3dt02110f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In recent years, metal-organic framework (MOF) derivatives have gradually become ideal materials for gas sensors due to their controllable composition, diverse structures and open metal sites. In this research, a simplified hydrothermal method was applied to successfully prepare MOF-derived α-Fe2O3 spindles, and an in situ reduction method was then utilized to deposit Pt, Pd and PtPd bimetallic nanoparticles (NPs) on the α-Fe2O3 spindles. The effects of noble metals Pt, Pd and PtPd on the gas-sensing properties of Fe2O3 were systematically examined. The PtPd/α-Fe2O3 sensor has enhanced gas-sensing performance for triethylamine (TEA), especially at PtPd content of 1.5 wt% and mass ratio of Pt : Pd = 90 : 10, where the response of the sensor to 100 ppm TEA at a lower temperature of 150 °C is 442, which is 34 times higher than that of the original α-Fe2O3 (response of 13). Additionally, the sensor demonstrated improved response/recovery properties and very respectable selectivity, repeatability, long-term stability within 30 days and lower detection limit (500 ppb) at 150 °C. Combining the results of XPS and O2-TPD, the enhanced gas-sensing properties of PtPd bimetallic-modified α-Fe2O3 over monometallic (Pt or Pd) modified α-Fe2O3 were analyzed, which can be attributed to the chemical and electronic sensitization of noble metals and the synergistic effect of the PtPd bimetallic NPs, resulting in more surface defects and enhanced oxygen adsorption capacity of the sensing material. This work provided an effective gas-sensing material for the low-temperature detection and analysis of triethylamine gas.
Collapse
Affiliation(s)
- Xianwen Yan
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Xueli Yang
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Zhen Sun
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Caixuan Sun
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Zheng Hu
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Yalin Zhang
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Guofeng Pan
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Lanlan Guo
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yuhang Qi
- School of Electronics and Information Engineering, Hebei University of Technology, Hebei Collaborative Innovation Center of Microelectronic Materials and Technology on Ultra Precision Processing (CIC), Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), Tianjin, 300130, China.
| | - Yehong Cheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
10
|
Li W, Guo Y, Liu Y, Yang W, Hu J, Ma J. A controllable surface etching strategy for MOF-derived porous ZnCo 2O 4@ZnO/Co 3O 4 oxides and their sensing properties. RSC Adv 2023; 13:24936-24943. [PMID: 37614793 PMCID: PMC10442772 DOI: 10.1039/d3ra05135h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Here, we report a surface etching strategy for the controllable synthesis of metal-organic framework (MOF)-derived ZnCo2O4@ZnO/Co3O4 oxides. Different from previous studies, ZnCo-glycolate (ZnCo-gly) spheres acted as sacrificial templates to provide Zn2+ and Co2+ ions, which coordinated with 2-MeIm to form Zeolitic Imidazolate Frameworks (ZIFs) on the surface of ZnCo-gly. A series of characterizations were employed to clarify the evolution of the surface etching strategy. Interestingly, the ZIF thickness of the ZnCo-gly surface could be controlled by adjusting the reaction time. After calcination, p-n heterojunctions were formed between the MOF-derived ZnO and Co3O4, which made it show excellent selectivity to methanal gas.
Collapse
Affiliation(s)
- Wang Li
- College of Materials Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030003 China
- Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province Taiyuan 030024 China
| | - Yulin Guo
- College of Materials Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030003 China
| | - Yan Liu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030003 China
| | - Wen Yang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030003 China
| | - Jifan Hu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030003 China
- Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province Taiyuan 030024 China
| | - Jiangwei Ma
- College of Materials Science and Engineering, Taiyuan University of Science and Technology Taiyuan 030003 China
- Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province Taiyuan 030024 China
| |
Collapse
|
11
|
Yi S, Shi W, Yang X, Yao Z. Engineering sensitive gas sensor based on MOF-derived hollow metal-oxide semiconductor heterostructures. Talanta 2023; 258:124442. [PMID: 36940575 DOI: 10.1016/j.talanta.2023.124442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) derived hollow heterostructured metal oxide semiconductors (MOSs) are a class of functional porous materials exhibiting distinctive physiochemical properties. Owing to the unique advantages, including large specific surface, high intrinsic catalytic performance, abundant channels for facilitating electron transfer and mass transport, and strong synergistic effect between different components, MOF-derived hollow MOSs heterostructures can work as promising candidates for gas sensing, which have thus attracted increasing attention. Aiming to provide a deep understanding on the design strategy and MOSs heterostructure, this review presents a comprehensive overview on the advantages and applications of MOF-derived hollow MOSs heterostructures when they used n for the detection of toxic gases. In addition, a deep discussion about the perspective and challenge of this interesting field is also well organized, hoping to provide guidance for the future design and development of more accurate gas sensors.
Collapse
Affiliation(s)
- Sili Yi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Wei Shi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China.
| | - Zufu Yao
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, PR China.
| |
Collapse
|
12
|
Wu K, Debliquy M, Zhang C. Metal-oxide-semiconductor resistive gas sensors for fish freshness detection. Compr Rev Food Sci Food Saf 2023; 22:913-945. [PMID: 36537904 DOI: 10.1111/1541-4337.13095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/09/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Fish are prone to spoilage and deterioration during processing, storage, or transportation. Therefore, there is a need for rapid and efficient techniques to detect and evaluate fish freshness during different periods or conditions. Gas sensors are increasingly important in the qualitative and quantitative evaluation of high-protein foods, including fish. Among them, metal-oxide-semiconductor resistive (MOSR) sensors with advantages such as low cost, small size, easy integration, and high sensitivity have been extensively studied in the past few years, which gradually show promising practical application prospects. Herein, we take the detection, classification, and assessment of fish freshness as the actual demand, and summarize the physical and chemical changes of fish during the spoilage process, the volatile marker gases released, and their production mechanisms. Then, we introduce the advantages, performance parameters, and working principles of gas sensors, and summarize the MOSR gas sensors aimed at detecting different kinds of volatile marker gases of fish spoiling in the last 5 years. After that, this paper reviews the research and application progress of MOSR gas sensor arrays and electronic nose technology for various odor indicators and fish freshness detection. Finally, this review points out the multifaceted challenges (sampling system, sensing module, and pattern recognition technology) faced by the rapid detection technology of fish freshness based on metal oxide gas sensors, and the potential solutions and development directions are proposed from the view of multidisciplinary intersection.
Collapse
Affiliation(s)
- Kaidi Wu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
- Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons, Belgium
| | - Marc Debliquy
- Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons, Belgium
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Shan G, Li G, Wang Y, Xing C, Zheng Y, Yang Y. Application and Prospect of Artificial Intelligence Methods in Signal Integrity Prediction and Optimization of Microsystems. MICROMACHINES 2023; 14:344. [PMID: 36838043 PMCID: PMC9958958 DOI: 10.3390/mi14020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Microsystems are widely used in 5G, the Internet of Things, smart electronic devices and other fields, and signal integrity (SI) determines their performance. Establishing accurate and fast predictive models and intelligent optimization models for SI in microsystems is extremely essential. Recently, neural networks (NNs) and heuristic optimization algorithms have been widely used to predict the SI performance of microsystems. This paper systematically summarizes the neural network methods applied in the prediction of microsystem SI performance, including artificial neural network (ANN), deep neural network (DNN), recurrent neural network (RNN), convolutional neural network (CNN), etc., as well as intelligent algorithms applied in the optimization of microsystem SI, including genetic algorithm (GA), differential evolution (DE), deep partition tree Bayesian optimization (DPTBO), two stage Bayesian optimization (TSBO), etc., and compares and discusses the characteristics and application fields of the current applied methods. The future development prospects are also predicted. Finally, the article is summarized.
Collapse
Affiliation(s)
- Guangbao Shan
- School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Guoliang Li
- School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Yuxuan Wang
- School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Chaoyang Xing
- Beijing Institute of Aerospace Control Devices, Beijing 100039, China
| | - Yanwen Zheng
- School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Yintang Yang
- School of Microelectronics, Xidian University, Xi’an 710071, China
| |
Collapse
|
14
|
Zhang E, Yan W, Zhou S, Ling M, Zhou H. Fe 3O 4@uio66 core-shell composite for detection of electrolyte leakage from lithium-ion batteries. NANOTECHNOLOGY 2023; 34:135501. [PMID: 36571850 DOI: 10.1088/1361-6528/acae5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Fe3O4is an environmentally friendly gas sensing material with high response, but the cross-response to various analytes and poor thermal stability limit its practical applications. In this work, we prepared Fe3O4@uio66 core-shell composite via a facile method. The selective response to volatile organic compounds, especially to electrolyte vapors of lithium-ion batteries, as well as long-term stability of Fe3O4@uio66 has been dramatically enhanced compared to pure Fe3O4, due to the preconcentrator feature and thermal stability of the uio66 thin shell. Real-time detection of electrolyte leakage for an actual punctured lithium-ion battery was further demonstrated. The Fe3O4@uio66 sensor, after aging for 3 months, was able to detect the electrolyte leakage in 30 s, while the voltage of the punctured battery was maintained at the same level as that of a pristine battery over 6 h. This practical test results verified ability of the Fe3O4@uio66 sensor with long-term aging stability for hours of early safety warning of lithium-ion batteries.
Collapse
Affiliation(s)
- Erpan Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
- Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shiyu Zhou
- Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Min Ling
- Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Houpan Zhou
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
15
|
Qi G, Qu F, Zhang L, Chen S, Bai M, Hu M, Lv X, Zhang J, Wang Z, Chen W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:9939. [PMID: 36560307 PMCID: PMC9785972 DOI: 10.3390/s22249939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This paper presents a straightforward method to develop a nanoporous graphene oxide (NGO)-functionalized quartz crystal microbalance (QCM) gas sensor for the detection of trimethylamine (TMA), aiming to form a reliable monitoring mechanism strategy for low-concentration TMA that can still cause serious odor nuisance. The synthesized NGO material was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy to verify its structure and morphology. Compared with the bare and GO-based QCM sensors, the NGO-based QCM sensor exhibited ultra-high sensitivity (65.23 Hz/μL), excellent linearity (R2 = 0.98), high response/recovery capability (3 s/20 s) and excellent repeatability (RSD = 0.02, n = 3) toward TMA with frequency shift and resistance. Furthermore, the selectivity of the proposed NGO-based sensor to TMA was verified by analysis of the dual-signal responses. It is also proved that increasing the conductivity did not improve the resistance signal. This work confirms that the proposed NGO-based sensor with dual signals provides a new avenue for TMA sensing, and the sensor is expected to become a potential candidate for gas detection.
Collapse
Affiliation(s)
- Guangyu Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Fangfang Qu
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 310002, China
| | - Lu Zhang
- School of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihao Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Mengyuan Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinyan Lv
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jinglei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zhenhe Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Wei Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
16
|
A Novel Gas Sensor for Detecting Pork Freshness Based on PANI/AgNWs/Silk. Foods 2022; 11:foods11152372. [PMID: 35954138 PMCID: PMC9368743 DOI: 10.3390/foods11152372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
A novel, operational, reliable, flexible gas sensor based on silk fibroin fibers (SFFs) as a substrate was proposed for detecting the freshness of pork. Silk is one of the earliest animal fibers utilized by humans, and SFFs exposed many biological micromolecules on the surface. Thus, the gas sensor was fabricated through polyaniline (PANI) and silver nanowires (AgNWs) and deposited on SFFs by in-suit polymerization. With trimethylamine (TMA) as a model gas, the sensing properties of the PANI/AgNWs/silk composites were examined at room temperature, and the linear correlativity was very prominent between these sensing measures and the TMA measures in the range of 3.33 μg/L-1200 μg/L. When the pork sample is detected by the sensor, it can be classified into fresh or stale pork with the total volatile basic nitrogen (TVB-N) as an index. The result indicated that the gas sensor was effective and showed great potential for applications to detect the freshness of pork.
Collapse
|
17
|
Liu L, Wang Y, Liu Y, Wang S, Li T, Feng S, Qin S, Zhang T. Heteronanostructural metal oxide-based gas microsensors. MICROSYSTEMS & NANOENGINEERING 2022; 8:85. [PMID: 35911378 PMCID: PMC9329395 DOI: 10.1038/s41378-022-00410-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance, portable and miniaturized gas sensors has aroused increasing interest in the fields of environmental monitoring, security, medical diagnosis, and agriculture. Among different detection tools, metal oxide semiconductor (MOS)-based chemiresistive gas sensors are the most popular choice in commercial applications and have the advantages of high stability, low cost, and high sensitivity. One of the most important ways to further enhance the sensor performance is to construct MOS-based nanoscale heterojunctions (heteronanostructural MOSs) from MOS nanomaterials. However, the sensing mechanism of heteronanostructural MOS-based sensors is different from that of single MOS-based gas sensors in that it is fairly complex. The performance of the sensors is influenced by various parameters, including the physical and chemical properties of the sensing materials (e.g., grain size, density of defects, and oxygen vacancies of materials), working temperatures, and device structures. This review introduces several concepts in the design of high-performance gas sensors by analyzing the sensing mechanism of heteronanostructural MOS-based sensors. In addition, the influence of the geometric device structure determined by the interconnection between the sensing materials and the working electrodes is discussed. To systematically investigate the sensing behavior of the sensor, the general sensing mechanism of three typical types of geometric device structures based on different heteronanostructural materials are introduced and discussed in this review. This review will provide guidelines for readers studying the sensing mechanism of gas sensors and designing high-performance gas sensors in the future.
Collapse
Affiliation(s)
- Lin Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Yingyi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Yinhang Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Nano Science and Nano Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu China
| | - Shuqi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Tie Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Sujie Qin
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Nano-X, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui PR China
- Gusu Laboratory of Materials, Suzhou, Jiangsu PR China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
18
|
Li X, Jin L, Ni A, Zhang L, He L, Gao H, Lin P, Zhang K, Chu X, Wang S. Tough and Antifreezing MXene@Au Hydrogel for Low-Temperature Trimethylamine Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30182-30191. [PMID: 35731700 DOI: 10.1021/acsami.2c06749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimethylamine (TMA) is one of the important chemical indexes to judge the freshness of marine fish. It is necessary to develop a low temperature TMA sensor to help the monitoring and prediction of the quality of marine fish in cold chain. Herein, a flexible low temperature TMA gas sensor featuring antifreezing and superior mechanical properties was developed based on the Au nanoparticle-modified MXene (MXene@Au) composite. MXene@Au was synthesized and then polymerized with a hydrogel composed of acrylamide (AM), N,N'-methylenebisacrylamide (BIS), sodium carboxymethyl cellulose (CMC), and EG, and the resultant MXene@Au hydrogel was found to exhibit excellent antifreezing performance even at extremely low temperature as well as high tensile strength, ultrastretchability, and toughness, which enabled an efficient gas sensing platform for TMA detection at low temperature. The TMA sensing properties of the flexible MXene@Au DN hydrogel sensor at 25 °C and a low temperature of 0 °C were studied, and a linear relationship between TMA sensitivity and concentration was built. The excellent sensing properties were maintained even under deformation. The application of the MXene@Au DN hydrogel sensor in detection of fish freshness at 0 °C was investigated. The result indicated the potential application of the flexible MXene@Au DN hydrogel gas sensor in dynamic quality monitoring and prediction of marine fish products during its transportation and storage in the cold chain.
Collapse
Affiliation(s)
- Xuhan Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Ling Jin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Anqi Ni
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Liqiang Zhang
- School of Metallurgy, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lifang He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Hong Gao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Peng Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xiangfeng Chu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Suhua Wang
- College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| |
Collapse
|
19
|
Yang J, Han W, Jiang B, Wang X, Sun Y, Wang W, Lou R, Ci H, Zhang H, Lu G. Electrospinning Derived NiO/NiFe 2O 4 Fiber-in-Tube Composite for Fast Triethylamine Detection under Different Humidity. ACS Sens 2022; 7:995-1007. [PMID: 35377609 DOI: 10.1021/acssensors.1c02462] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Designing high-performance triethylamine gas sensors with the stable gas response and low resistance variation in air under a wide relative humidity range is expected for human health and environmental surveillance. Here, a novel porous NiO/NiFe2O4 fiber-in-tube nanostructure is prepared by the electrospinning process. The characterizations related to microstructure and surface morphology are carried out. Meanwhile, the gas sensing performance of the porous fiber-in-tube NiO/NiFe2O4 materials is evaluated and compared systematically. The results indicate that the introduction of NiO as the second component can not only reduce the baseline resistance of NiFe2O4 gas sensors dramatically but also optimize the gas sensing performance to a significant extent. Especially, the fabricated sensor based on the NiO/NiFe2O4 fiber-in-tube with a Ni/Fe molar ratio of 1.5 exhibits the best performance. The gas response while detecting 50 ppm triethylamine at 300 °C is about 3.6 times higher than that with Ni/Fe molar ratio of 0.5. Moreover, the response values become more stable, and the baseline resistance has a lower variation under a wide relative humidity range, demonstrating the excellent humidity resistance. These phenomena might be ascribed to the distinctive fiber-in-tube nanostructure as well as the heterojunction between NiFe2O4 and NiO.
Collapse
Affiliation(s)
- Jiaqi Yang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Wenjiang Han
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Bin Jiang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Xi Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Yanfeng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Wenyang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Ruilin Lou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Hedi Ci
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Hong Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| |
Collapse
|
20
|
Research Progress on Coating of Sensitive Materials for Micro-Hotplate Gas Sensor. MICROMACHINES 2022; 13:mi13030491. [PMID: 35334783 PMCID: PMC8952244 DOI: 10.3390/mi13030491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/09/2023]
Abstract
Micro-hotplate gas sensors are widely used in air quality monitoring, identification of hazardous chemicals, human health monitoring, and other fields due to their advantages of small size, low power consumption, excellent consistency, and fast response speed. The micro-hotplate gas sensor comprises a micro-hotplate and a gas-sensitive material layer. The micro-hotplate is responsible for providing temperature conditions for the sensor to work. The gas-sensitive material layer is responsible for the redox reaction with the gas molecules to be measured, causing the resistance value to change. The gas-sensitive material film with high stability, fantastic adhesion, and amazing uniformity is prepared on the surface of the micro-hotplate to realize the reliable assembly of the gas-sensitive material and the micro-hotplate, which can improve the response speed, response value, and selectivity. This paper first introduces the classification and structural characteristics of micro-hotplates. Then the assembly process and characteristics of various gas-sensing materials and micro-hotplates are summarized. Finally, the assembly method of the gas-sensing material and the micro-hotplate prospects.
Collapse
|
21
|
Porous Pb-Doped ZnO Nanobelts with Enriched Oxygen Vacancies: Preparation and Their Chemiresistive Sensing Performance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among various approaches to improve the sensing performance of metal oxide, the metal-doped method is perceived as effective, and has received great attention and is widely investigated. However, it is still a challenge to construct heterogeneous metal-doped metal oxide with an excellent sensing performance. In the present study, porous Pb-doped ZnO nanobelts were prepared by a simply partial cation exchange method, followed by in situ thermal oxidation. Detailed characterization confirmed that Pb was uniformly distributed on porous nanobelts. Additionally, it occupied the Zn situation, not forming its oxides. The gas-sensing measurements revealed that 0.61 at% Pb-doped ZnO porous nanobelts exhibited a selectively enhanced response with long-term stability toward n-butanol among the investigated VOCs. The relative response to 50 ppm of n-butanol was up to 47.7 at the working temperature of 300 °C. Additionally, the response time was short (about 5 s). These results were mainly ascribed to the porous nanostructure, two-dimensional belt-like morphology, enriched oxygen vacancies and the specific synergistic effect from the Pb dopant. Finally, a possible sensing mechanism of porous Pb-doped ZnO nanobelts is proposed and discussed.
Collapse
|
22
|
Yuan G, Zhong Y, Chen Y, Zhuo Q, Sun X. Highly sensitive and fast-response ethanol sensing of porous Co 3O 4 hollow polyhedra via palladium reined spillover effect. RSC Adv 2022; 12:6725-6731. [PMID: 35424623 PMCID: PMC8981977 DOI: 10.1039/d1ra09352e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Highly sensitive and fast detection of volatile organic compounds (VOCs) in industrial and living environments is an urgent need. The combination of distinctive structure and noble metal modification is an important strategy to achieve high-performance gas sensing materials. In addition, it is urgent to clarify the chemical state and function of noble metals on the surface of the sensing material during the actual sensing process. In this work, Pd modified Co3O4 hollow polyhedral (Pd/Co3O4 HP) is developed through one-step pyrolysis of a Pd doped MOF precursor. At an operating temperature of 150 °C, the Pd/Co3O4 HP gas sensor can achieve 1.6 times higher sensitivity than that of Co3O4 HP along with fast response (12 s) and recovery speed (25 s) for 100 ppm ethanol vapor. Near-ambient pressure X-ray photoelectron spectroscopy (NAPXPS) was used to monitor the dynamic changes in the surface state of Pd/Co3O4 HP. The NAPXPS results reveal that the oxidation and reduction of Pd in the ethanol sensing process are attributed to a spillover effect of oxygen and ethanol, respectively. This work opens up an effective approach to investigate spillover effects in a sensing mechanism of noble metal modified oxide semiconductor sensors. Pd/Co3O4 HP was developed by simple pyrolysis of Pd doped MOF, which achieved high sensitivity with fast response (12 s)/recovery speed (25 s) for 100 ppm ethanol. APXPS results provide experimental evidence to enhance performance by Pd spillover effect.![]()
Collapse
Affiliation(s)
- Guotao Yuan
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| | - Yihong Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| | - Yufeng Chen
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| | - Qiqi Zhuo
- College of Material Science & Engineering, Jiangsu University of Science and Technology Zhenjiang China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| |
Collapse
|