1
|
Albashir D, Lu H, Gouda M, Acharya DR, Danhassan UA, Bakur A, Shi Y, Chen Q. A novel polydiacetylene-functionalized fibrinogen paper-based biosensor for on-spot and rapid detection of Staphylococcus aureus. Food Chem 2024; 458:140291. [PMID: 38959795 DOI: 10.1016/j.foodchem.2024.140291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Staphylococcus aureus contamination continues to be a harmful foodborne pathogen threatening of human health, and there is a growing need for rapid detection technologies. This study proposed a novel paper biosensor based on a polydiacetylene (PDA) polymer functionalized fibrinogen (Fg) for the detection of S. aureus in food sources. The fluorophore was developed based on the high binding ability of fibrinogen-binding proteins on the surface of S. aureus. This binding caused twisting in the PDA backbone, leading to changes in chromatic and fluorescent. The detection limit of this method was 50.1 CFU/mL for S. aureus-contaminated foodstuffs and 65.0 CFU/mL for the pure S. aureus culture, and the novelty came from its rapidity and selectivity for S. aureus compared to other foodborne bacteria. In summary, the present work provides a rapid detection method for S. aureus detection, which will help in addressing food safety-related issues.
Collapse
Affiliation(s)
- Dafaallah Albashir
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition and Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Dev Raj Acharya
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | | | - Abdelmoneim Bakur
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Sciences and Technology, University of Kordofan, El Obeid, Sudan
| | - Ying Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhang M, Zhang Q, Ye L. Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene. Anal Bioanal Chem 2024:10.1007/s00216-024-05617-x. [PMID: 39467911 DOI: 10.1007/s00216-024-05617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Polydiacetylene (PDA) holds promise as a versatile material for biosensing applications due to its unique optical properties and self-assembly capabilities. In this study, we developed a colorimetric detection biosensor system utilizing PDA and aptamer for the detection of microcystin-LR (MC-LR), a potent hepatotoxin found in cyanobacteria-contaminated environments. The biosensor was constructed by immobilizing MC-LR-specific aptamer on magnetic beads, where the aptamer was hybridized with a urease-labelled complementary DNA (cDNA-urease). Upon binding MC-LR, the aptamer undergoes a conformational change to release cDNA-urease. The released cDNA-urease is subsequently captured by PDA bearing a single-stranded DNA (ssDNA). The enzymatic reaction triggers a distinctive color transition of PDA from blue to red. The results demonstrate exceptional sensitivity, with a linear detection range of 5-100 ng/mL and a limit of detection as low as 1 ng/mL. The practicability of the colorimetric method was demonstrated by detecting different levels of MC-LR in spiked water samples. The recoveries ranged from 77.3 to 102% and the color change, visible to the naked eye, underscores the practical utility for on-site applications. Selectivity for MC-LR over other microcystin variants (MC-RR and MC-YR) was confirmed. The colorimetric detection platform capitalizes on the properties of PDA and nucleic acid, offering a robust method for detecting small molecules with potential applications in environmental monitoring and public health.
Collapse
Affiliation(s)
- Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Qicheng Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
3
|
Thakuri A, Banerjee M, Chatterjee A. Polydiacetylene Liposome-Based Dual-Output Optical Sensor for ppb Level Detection of Dopamine in Solution and Solid Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17613-17621. [PMID: 39120008 DOI: 10.1021/acs.langmuir.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Dopamine (DA), a neurotransmitter, plays a crucial role in regulating motor functions and emotions and can serve as a marker for several diseases. In this study, we report a highly sensitive polydiacetylenes (PDA)-based dual-output sensor for dopamine detection in both solution and solid phases that was developed by modifying PDA liposomes with boronic acid groups at the termini. This sensor exploits the high affinity between the catechol residue of dopamine and the -B(OH)2 group of the PDA-based probe (PDA-PhBA) to form boronate ester bonds, causing a stress-induced blue-to-red color change along with a steady increase in fluorescence response at λmax 622 nm. The PDA-PhBA-based sensor displays high sensitivity toward dopamine with low limit of detection of 6.2 ppb in colorimetric analysis and 0.6 ppb in fluorimetric measurements, demonstrating its dual optical output ability. The sensor works well for adrenaline, another catecholamine, with similar efficacy. Its practical applicability was validated by the successful recovery of trace level dopamine in blood serum and real water samples. Additionally, immobilizing PDA-PhBA liposomes in sodium alginate produced PDA beads for the solid-phase detection of dopamine with an limit of detection (LOD) of 59 nM (9.0 ppb) in colorimetric detection using a smartphone for capturing images and ImageJ software for analysis.
Collapse
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| |
Collapse
|
4
|
Tao C, Wang J, Zhu Y, Ding C, Shen Z, Sun D, Cao S, Jiang X, Li Y, Liu C, Zhang Q, Li S, Zhang X, Shi Q, Kong D. A highly sensitive fluorescence biosensor for aflatoxins B 1 detection based on polydiacetylene liposomes combined with exonuclease III-assisted recycling amplification. Mikrochim Acta 2024; 191:397. [PMID: 38877314 DOI: 10.1007/s00604-024-06482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.
Collapse
Affiliation(s)
- Chunxu Tao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Junyan Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Ying Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Chao Ding
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Zhuoyue Shen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Danni Sun
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Shanshan Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Xinrong Jiang
- The Quality Monitoring Center for Food and Strategic Reserves of Zhenjiang City, Zhenjiang, 212009, Jiangsu, China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Xinyan Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
5
|
Takegami S, Danzako M, Konishi A. Detection of dopamine levels using a polydiacetylene liposomal aequorin bioluminescent device with octadecylboronic acid. ANAL SCI 2024; 40:353-356. [PMID: 38062250 DOI: 10.1007/s44211-023-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 02/06/2024]
Abstract
The development of an easy-to-use and rapid method for the determination of dopamine levels is desirable for the diagnosis of neurological conditions, such as Parkinson's disease, which are characterized by low levels of dopamine. Herein, a polydiacetylene liposomal aequorin bioluminescent device (PLABD) containing octadecylboronic acid (OBA) as a recognition material (PLABD-OBA) was prepared for the determination of dopamine concentrations in aqueous solution. The bioluminescent signals of the photoprotein aequorin in PLABD-OBA increased according to increasing dopamine concentrations. The calibration curve showed good linearity over a dopamine concentration range of 70-700 µM (r = 0.918), with a detection limit of 7.5 µM. The addition of other catecholamines to the PLABD-OBA resulted in low bioluminescent signals of aequorin. Because the physiological levels of dopamine are generally 0.001-1.0 µM, this system had insufficient sensitivity for the clinical monitoring of dopamine levels. However, the PLABD-OBA developed herein is an easy-to-use and rapid analytical method that is specific for dopamine.
Collapse
Affiliation(s)
- Shigehiko Takegami
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Minato Danzako
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Atsuko Konishi
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
6
|
Zheng J, Das B, Sugihara K. Dual Friction Force/Fluorescence Microscopy. Anal Chem 2024; 96:949-956. [PMID: 38180748 DOI: 10.1021/acs.analchem.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Friction force microscopy (FFM) is a mode of atomic force microscopy (AFM) that quantifies both normal and horizontal forces against substrates. Recent improvement in its accuracy at nanonewton ranges and the possibility of combining AFM with fluorescence microscopy enabled the simultaneous characterization by FFM and fluorescence microscopy. This Tutorial describes the operation principle of the dual friction force/fluorescence microscopy setup and highlights its emerging applications in mechanochromic materials.
Collapse
Affiliation(s)
- Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| | - Bratati Das
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
7
|
Kim R, Mun B, Lim S, Park C, Kim J, Lim J, Jeong H, Son HY, Rho HW, Lim EK, Haam S. Colorimetric Detection of HER2-Overexpressing-Cancer-Derived Exosomes in Mouse Urine Using Magnetic-Polydiacetylene Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307262. [PMID: 37963850 DOI: 10.1002/smll.202307262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Breast cancer (BC) is a major global health problem, with ≈20-25% of patients overexpressing human epidermal growth factor receptor 2 (HER2), an aggressive marker, yet access to early detection and treatment varies across countries. A low-cost, equipment-free, and easy-to-use polydiacetylene (PDA)-based colorimetric sensor is developed for HER2-overexpressing cancer detection, designed for use in low- and middle-income countries (LMICs). PDA nanoparticles are first prepared through thin-film hydration. Subsequently, hydrophilic magnetic nanoparticles and HER2 antibodies are sequentially conjugated to them. The synthesized HER2-MPDA can be concentrated and separated by a magnetic field while inheriting the optical characteristics of PDA. The specific binding of HER2 antibody in HER2-MPDA to HER2 receptor in HER2-overexpressing exosomes causes a blue-to-red color change by altering the molecular structure of the PDA backbone. This colorimetric sensor can simultaneously separate and detect HER2-overexpressing exosomes. HER2-MPDA can detect HER2-overexpressing exosomes in the culture medium of HER2-overexpressing BC cells and in mouse urine samples from a HER2-overexpressing BC mouse model. It can selectively isolate and detect only HER2-overexpressing exosomes through magnetic separation, and its detection limit is found to be 8.5 × 108 particles mL-1 . This colorimetric sensor can be used for point-of-care diagnosis of HER2-overexpressing BC in LMICs.
Collapse
Affiliation(s)
- Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seongjae Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaewook Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Seo J, Khazi MI, Bae K, Kim JM. Temperature-Controlled Pathway Complexity in Self-Assembly of Perylene Diimide-Polydiacetylene Supramolecule. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206428. [PMID: 36732849 DOI: 10.1002/smll.202206428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/13/2023] [Indexed: 05/04/2023]
Abstract
Self-assembly process represents one of the most powerful and efficient methods for designing functional nanomaterials. For generating optimal functional materials, understanding the pathway complexity during self-assembly is essential, which involves the aggregation of molecules into thermodynamically or kinetically favored pathways. Herein, a functional perylene diimide (PDI) derivative by introducing diacetylene (DA) chains (PDI-DA) is designed. Temperature control pathway complexity with the evolution of distinct morphology for the kinetic and thermodynamic product of PDI-DA is investigated in detail. A facile strategy of UV-induced polymerization is adopted to trap and capture metastable kinetic intermediates to understand the self-assembly mechanism. PDI-DA showed two kinetic intermediates having the morphology of nanosheets and nanoparticles before transforming into the thermodynamic product having fibrous morphology. Spectroscopic studies revealed the existence of distinct H- and J-aggregates for kinetic and thermodynamic products respectively. The polymerized fibrous PDI-DA displayed reversible switching between J-aggregate and H-aggregate.
Collapse
Affiliation(s)
- Joonsik Seo
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
| | | | - Kwangmin Bae
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Korea
| |
Collapse
|
9
|
Jang S, Son SU, Kim J, Kim H, Lim J, Seo SB, Kang B, Kang T, Jung J, Seo S, Lim EK. Polydiacetylene-based hydrogel beads as colorimetric sensors for the detection of biogenic amines in spoiled meat. Food Chem 2023; 403:134317. [DOI: 10.1016/j.foodchem.2022.134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
10
|
Jang D, Heo J, Jannah F, Khazi MI, Son YJ, Noh J, An H, Park SM, Yoon DK, Kadamannil NN, Jelinek R, Kim J. Stimulus‐Responsive Tubular Conjugated Polymer 2D Nanosheets. Angew Chem Int Ed Engl 2022; 61:e202211465. [DOI: 10.1002/anie.202211465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Daewoong Jang
- Department of Chemical Engineering Hanyang University Seoul 04763 Korea
| | - Jung‐Moo Heo
- Department of Chemical Engineering Hanyang University Seoul 04763 Korea
| | - Fadilatul Jannah
- Department of Chemical Engineering Hanyang University Seoul 04763 Korea
| | | | - Young Ji Son
- Department of Chemistry Hanyang University Seoul 04763 Korea
| | - Jaegeun Noh
- Institute of Nano Science and Technology Hanyang University Seoul 04763 Korea
- Department of Chemistry Hanyang University Seoul 04763 Korea
| | - Hyosung An
- Department of Petrochemical Materials Engineering Chonnam National University Yeosu 59631 Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | | | - Raz Jelinek
- Department of Chemistry Ben Gurion University Negev Beer Sheva 8410501 Israel
| | - Jong‐Man Kim
- Department of Chemical Engineering Hanyang University Seoul 04763 Korea
- Institute of Nano Science and Technology Hanyang University Seoul 04763 Korea
| |
Collapse
|
11
|
Jang D, Heo JM, Jannah F, Khazi MI, Son YJ, Noh J, An H, Park SM, Yoon DK, Kadamannil NN, Jelinek R, Kim JM. Stimulus‐responsive Tubular Conjugated Polymer 2D Nanosheets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daewoong Jang
- Hanyang University Department of Chemical Engineering KOREA, REPUBLIC OF
| | - Jung-Moo Heo
- Hanyang University Department of Chemical Engineering KOREA, REPUBLIC OF
| | - Fadilatul Jannah
- Hanyang University Department of Chemical Engineering KOREA, REPUBLIC OF
| | | | - Young Ji Son
- Hanyang University Department of Chemistry KOREA, REPUBLIC OF
| | - Jaegeun Noh
- Hanyang University Department of Chemistry KOREA, REPUBLIC OF
| | - Hyosung An
- Chonnam National University Department of Petrochemical Materials Engineering KOREA, REPUBLIC OF
| | - Soon Mo Park
- Korea Advanced Institute of Science and Technology Graduate School of Nanoscience and Technologies KOREA, REPUBLIC OF
| | - Dong Ki Yoon
- Korea Advanced Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | | | - Raz Jelinek
- Ben-Gurion University of the Negev Department of Chemistry ISRAEL
| | - Jong-Man Kim
- Hanyang University Department of Chemical Engineering 222 Wangsimni-roSeongdong-gu 04763 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
12
|
Andina RI, Kingchok S, Laohhasurayotin K, Traiphol N, Traiphol R. Multi-reversible thermochromic polydiacetylene-CuZnFe2O4 magnetic nanocomposites with tunable colorimetric response to acid-base. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Seo D, Ansari R, Lee K, Kieffer J, Kim J. Amplifying the Sensitivity of Polydiacetylene Sensors: The Dummy Molecule Approach. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14561-14567. [PMID: 35293721 DOI: 10.1021/acsami.1c25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an increasing need for fast and accurate assessment of various health conditions, where polydiacetylenes (PDA), having unique stress-sensitive optical properties, have great potential. When the conjugated backbone of PDA is disturbed by steric repulsion between the receptor-target complexes formed at the PDA surface via specific recognition events, the bandgap of PDA increases and produces color change and fluorescent emission as a dual sensory signal. However, this detection mechanism suggests an intrinsic sensitivity limit of PDA platform because unless adjacent receptors are occupied by target molecules no signal is anticipated. A novel approach to improve the sensitivity and limit of detection of PDA sensors has been developed by preoccupying the surface of PDA liposomes with an optimized amount of artificial target molecules named as dummy molecules. The sensitivity and limit of detection (LOD) showed large improvement by the surface-bound dummy molecules. In addition, the dummy strategy was synergically integrated with another sensitivity enhancing method with a different working mechanism in a PDA sensor for Neomycin detection. When optimized, the LOD of the PDA sensor was improved to 7 nM from 80 nM of the control and the signal intensity increased consistently throughout the entire tested concentration range of the target Neomycin. Finally, the general applicability of the dummy strategy to other target molecules was successfully confirmed by implementing the dummy strategy in a PDA sensor for Surfactin detection.
Collapse
Affiliation(s)
- Deokwon Seo
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ramin Ansari
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - John Kieffer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinsang Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|