1
|
Zhang F, Bischof H, Burgstaller S, Bourgeois BMR, Malli R, Madl T. Genetically encoded fluorescent sensor to monitor intracellular arginine methylation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112867. [PMID: 38368636 DOI: 10.1016/j.jphotobiol.2024.112867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Arginine methylation (ArgMet), as a post-translational modification, plays crucial roles in RNA processing, transcriptional regulation, signal transduction, DNA repair, apoptosis and liquid-liquid phase separation (LLPS). Since arginine methylation is associated with cancer pathogenesis and progression, protein arginine methyltransferases have gained interest as targets for anti-cancer therapy. Despite considerable process made to elucidate (patho)physiological mechanisms regulated by arginine methylation, there remains a lack of tools to visualize arginine methylation with high spatiotemporal resolution in live cells. To address this unmet need, we generated an ArgMet-sensitive genetically encoded, Förster resonance energy transfer-(FRET) based biosensor, called GEMS, capable of quantitative real-time monitoring of ArgMet dynamics. We optimized these biosensors by using different ArgMet-binding domains, arginine-glycine-rich regions and adjusting the linkers within the biosensors to improve their performance. Using a set of mammalian cell lines and modulators, we demonstrated the applicability of GEMS for monitoring changes in arginine methylation with single-cell and temporal resolution. The GEMS can facilitate the in vitro screening to find potential protein arginine methyltransferase inhibitors and will contribute to a better understanding of the regulation of ArgMet related to differentiation, development and disease.
Collapse
Affiliation(s)
- Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350122, China; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sandra Burgstaller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Benjamin M R Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
2
|
Grolleau E, Candiracci J, Lescuyer G, Barthelemy D, Benzerdjeb N, Haon C, Geiguer F, Raffin M, Hardat N, Balandier J, Rabeuf R, Chalabreysse L, Wozny AS, Rommelaere G, Rodriguez-Lafrasse C, Subtil F, Couraud S, Herzog M, Payen-Gay L. Circulating H3K27 Methylated Nucleosome Plasma Concentration: Synergistic Information with Circulating Tumor DNA Molecular Profiling. Biomolecules 2023; 13:1255. [PMID: 37627320 PMCID: PMC10452235 DOI: 10.3390/biom13081255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The molecular profiling of circulating tumor DNA (ctDNA) is a helpful tool not only in cancer treatment, but also in the early detection of relapse. However, the clinical interpretation of a ctDNA negative result remains challenging. The characterization of circulating nucleosomes (carrying cell-free DNA) and associated epigenetic modifications (playing a key role in the tumorigenesis of different cancers) may provide useful information for patient management, by supporting the contributive value of ctDNA molecular profiling. Significantly elevated concentrations of H3K27Me3 nucleosomes were found in plasmas at the diagnosis, and during the follow-up, of NSCLC patients, compared to healthy donors (p-value < 0.0001). By combining the H3K27Me3 level and the ctDNA molecular profile, we found that 25.5% of the patients had H3K27Me3 levels above the cut off, and no somatic alteration was detected at diagnosis. This strongly supports the presence of non-mutated ctDNA in the corresponding plasma. During the patient follow-up, a high H3K27Me3-nucleosome level was found in 15.1% of the sample, despite no somatic mutations being detected, allowing the identification of disease progression from 43.1% to 58.2% over molecular profiling alone. Measuring H3K27Me3-nucleosome levels in combination with ctDNA molecular profiling may improve confidence in the negative molecular result for cfDNA in lung cancer at diagnosis, and may also be a promising biomarker for molecular residual disease (MRD) monitoring, during and/or after treatment.
Collapse
Affiliation(s)
- Emmanuel Grolleau
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Pulmonology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Julie Candiracci
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Gaelle Lescuyer
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - David Barthelemy
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Nazim Benzerdjeb
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Pathology Department, Claude Bernard University Lyon I, Hospices Civils de Lyon, 69677 Bron, France
| | - Christine Haon
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Florence Geiguer
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Margaux Raffin
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Nathalie Hardat
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Julie Balandier
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| | - Rémi Rabeuf
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Lara Chalabreysse
- Pathology Department, Claude Bernard University Lyon I, Hospices Civils de Lyon, 69677 Bron, France
| | - Anne-Sophie Wozny
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
- Cellular and Molecular Radiobiology Laboratory UMR CNRS5822/IP2I, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
| | | | - Claire Rodriguez-Lafrasse
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
- Cellular and Molecular Radiobiology Laboratory UMR CNRS5822/IP2I, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
| | - Fabien Subtil
- Statistic Department, Hospices Civils de Lyon, 69008 Lyon, France
- LBBE, Claude Bernard University Lyon I, UMR 5558, CNRS, 69100 Villeurbanne, France
| | - Sébastien Couraud
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Pulmonology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Marielle Herzog
- Belgian Volition SRL, Parc Scientifique Créalys, 5032 Isnes, Belgium
| | - Lea Payen-Gay
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921 Oullins, France
- Institute of Pharmaceutical and Biological Sciences (ISPB), Claude Bernard University Lyon I, 69373 Lyon, France
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre-Bénite, France
| |
Collapse
|
3
|
Parkinson J, Hard R, Ainsworth R, Wang W. Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition. Proteins 2023; 91:32-46. [PMID: 35927178 PMCID: PMC9771871 DOI: 10.1002/prot.26408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
JMJD2A is a histone lysine demethylase which recognizes and demethylates H3K9me3 and H3K36me3 residues and is overexpressed in various cancers. It utilizes a tandem tudor domain to facilitate its own recruitment to histone sites, recognizing various di- and tri-methyl lysine residues with moderate affinity. In this study, we successfully engineered the tudor domain of JMJD2A to specifically bind to H4K20me3 with a 20-fold increase of affinity and improved selectivity. To reveal the molecular basis, we performed molecular dynamics and free energy decomposition analysis on the human JMJD2A tandem tudor domains bound to H4K20me2, H4K20me3, and H3K23me3 peptides to uncover the residues and conformational changes important for the enhanced binding affinity and selectivity toward H4K20me2/3. These analyses revealed new insights into understanding chromatin reader domains recognizing histone modifications and improving binding affinity and selectivity of these domains. Furthermore, we showed that the tight binding of JMJD2A to H4K20me2/3 is not sufficient to improve the efficiency of CRISPR-CAS9 mediated homology directed repair (HDR), suggesting a complicated relationship between JMJD2A and the DNA damage response beyond binding affinity toward the H4K20me2/3 mark.
Collapse
Affiliation(s)
- Jonathan Parkinson
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Ryan Hard
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Richard Ainsworth
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
4
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|