1
|
Cheng H, Chen R, Zhan Y, Dong W, Chen Q, Wang Y, Zhou P, Gao S, Huang W, Li L, Feng J. Novel Ratiometric Surface-Enhanced Raman Scattering (SERS) Biosensor for Ultrasensitive Quantitative Monitoring of Human Carboxylesterase-1 in Hepatocellular Carcinoma Cells Using Ag-Au Nanoflowers as SERS Substrate. Anal Chem 2024. [PMID: 39498661 DOI: 10.1021/acs.analchem.4c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
In this study, we developed ratiometric surface-enhanced Raman scattering (SERS) biosensors using Ag-Au alloy nanoflowers as SERS substrates, molecules having amide bonds and alkyne groups (Tag A) as Raman reporters, and sodium thiocyanate as an internal standard molecule (Tag B) for the sensitive detection of human carboxylesterase-1 (hCE1) in HepG-2 cells. The correlation between HepG-2 cell damage and hCE1 activity levels was investigated. Both Tag A's alkyne group and Tag B's cyanide group produced characteristic SERS signals in the Raman-silent region (I2000 cm-1 and I2115 cm-1, respectively). The hydrolysis of the amide bond in Tag A via hCE1 and the shedding of the alkyne group led to a reduction in the SERS signal intensity observed at I2000 cm-1. Conversely, the SERS signal intensity of Tag B at I2115 cm-1 exhibited a consistent pattern. As the activity level of hCE1 and the ratiometric peak intensity (I2000 cm-1/I2115 cm-1) correlated negatively, hCE1 could be quantitatively detected within the range of 10-2 to 2 × 102 ng·mL-1, with a detection limit of 7.3 pg·mL-1. The ratiometric SERS probe strategy, in which a ratio response is employed, permits sensitive and reproducible SERS detection by facilitating intrinsic calibration to rectify signal fluctuations resulting from temporal and spatial variations in the detection conditions. Concurrently, the implementation of Raman-silent region reporter molecules mitigates the interference from endogenous biomolecules in SERS measurements and offers a novel approach for achieving highly sensitive and interference-free detection of intracellular hCE1.
Collapse
Affiliation(s)
- Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Ruijue Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Yaqin Zhan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Wuheng Dong
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Qiying Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Pei Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Si Gao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| |
Collapse
|
2
|
Fan S, Scarpitti BT, Luo Z, Smith AE, Ye J, Schultz ZD. Facile synthesis of intra-nanogap enhanced Raman tags with different shapes. NANO RESEARCH 2024; 17:8415-8423. [PMID: 39439578 PMCID: PMC11493321 DOI: 10.1007/s12274-024-6807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 10/25/2024]
Abstract
Hot spot engineering in plasmonic nanostructures plays a significant role in surface enhanced Raman scattering for bioanalysis and cell imaging. However, creating stable, reproducible, and strong SERS signals remains challenging due to the potential interference from surrounding chemicals and locating SERS-active analytes into hot-spot regions. Herein, we developed a straightforward approach to synthesize intra-gap nanoparticles encapsulating 4-nitrobenzenethiol (4-NBT) as a reporter molecule within these gaps to avoid outside interference. We made three kinds of intra-gap nanoparticles using nanorods, bipyramids, and nanospheres as cores, in which the nanorod based intra-gap nanoparticles exhibit the highest SERS activity. The advantage of our method is the ease of preparation of high-yield and stable intra-gap nanoparticles characterized by a short incubation time (10 mins) with 4-NBT and quick synthesis without requiring an additional step to centrifuge for the purification of core nanoparticles. The intense localized field in the synthesized hot spots of these plasmonic gap nanostructures holds great promise as a SERS substrate for a broad range of quantitative optical applications.
Collapse
Affiliation(s)
- Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Brian T. Scarpitti
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Abigail E. Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
3
|
Shi Y, Villani E, Chen Y, Zhou Y, Chen Z, Hussain A, Xu G, Inagi S. High-Throughput Electrosynthesis of Gradient Polypyrrole Film Using a Single-Electrode Electrochemical System. Anal Chem 2023; 95:1532-1540. [PMID: 36563173 DOI: 10.1021/acs.analchem.2c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an effective approach for materials synthesis, bipolar electrochemistry has been earning a renewed interest nowadays thanks to its unique features compared to conventional electrochemistry. Indeed, the wireless mode of electrode reactions and the generation of a gradient potential distribution above the bipolar electrode are among the most appealing qualities of bipolar electrochemistry. In particular, the gradient potential distribution is a highly attractive characteristic for the fabrication of surfaces with gradients in their chemical properties or molecular functionalities. Herein, we report the high-throughput electrosynthesis of gradient polypyrrole films by means of a new electrochemical cell design named the single-electrode electrochemical system (SEES). SEESs are made by attaching an inert plastic board with holes onto an indium tin oxide electrode, constructing multiple microelectrochemical cells on the same electrode. This type of arrangement enables parallel electrochemical reactions to be carried out simultaneously and controlled in a contactless manner by a single electrode. Several experimental conditions for polypyrrole film growth were extensively investigated. Furthermore, the gradient property of the polymer films was evaluated by thickness determination, surface morphology analysis, and contact angle measurements. The use of SEES has been demonstrated as a convenient and cost-effective strategy for high-throughput electrosynthesis and electroanalytical applications and has opened up a new door for gradient film preparation via a rapid condition screening process.
Collapse
Affiliation(s)
- Yulin Shi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| | - Elena Villani
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan
| | - Yequan Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| | - Yaqian Zhou
- College of Chemistry and Materials Science, Northwest University, Xi'an710069, P. R. China
| | - Zhenghao Chen
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan
| |
Collapse
|
4
|
Xing K, Bao H, Ding N, Xiong Y, Peng J, Lai W. Plasmonic gold nanoparticles aggregate based on charge neutralization for the convenient detection of fumonisin B1 by colorimetry and SERS. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Jiang M, Xi X, Wu Z, Zhang X, Wang S, Wen W. In Situ Measurement of ATP in Single Cells by an Amphiphilic Aptamer-Assisted Electrochemical Nano-Biosensor. Anal Chem 2022; 94:14699-14706. [DOI: 10.1021/acs.analchem.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Jiang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiaoxue Xi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Coconstructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|