1
|
Wen X, Xue Z, Wang K, Li J, Ding Y, Wang G, Xu H, Hong X. Sensitive and accurate photoluminescent-multiphonon resonant Raman scattering dual-mode detection of microRNA-21 via catalytic hairpin assembly amplification and magnetic assistance. Mikrochim Acta 2025; 192:49. [PMID: 39747697 DOI: 10.1007/s00604-024-06920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic Fe3O4 nanoparticle clusters (NCs) to enhance sensitivity. A remarkable detection sensitivity was achieved, with an ultralow limit of detection (LOD) of 310 aM for PL and 460 aM for MRRS. A wide detection range spanning from 500 aM to 100 nM for PL and 500 aM to 10 nM for MRRS was demonstrated, showcasing the versatility and efficacy of the method. Comparing to current methods and our previous work, both sensitivity and detection range showed significant advancements. The consistency between the detection results of PL and MRRS modes highlights the reliability and robustness of our method, offering compelling internal validation. This work not only opens new avenues for achieving sensitive and accurate detection of miRNAs, but also shows significant promise for advancing diagnostic applications in disease management.
Collapse
Affiliation(s)
- Xiaokun Wen
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China
| | - Zhibo Xue
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China
| | - Kexin Wang
- College of Physics, Liaoning University, Shenyang, 110036, P. R. China
| | - Jun Li
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China
| | - Guorui Wang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China.
| |
Collapse
|
2
|
Zhang H, Zhang L. Live-Cell RNA Imaging with a DNA-Functionalized Metal-Organic Framework-Based Fluorescent Probe. Methods Mol Biol 2025; 2875:59-70. [PMID: 39535639 DOI: 10.1007/978-1-0716-4248-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Live-cell fluorescence imaging of tumor-associated miRNAs is significant for understanding the cancer onset and progression and the diagnosis and prognosis of clinical diseases. In this protocol, we describe the construction of a DNA-functionalized metal-organic framework-based fluorescent probe and demonstrate that the probe can be used to detect miRNA in vitro and live-cell imaging. The formed DNA-MOF probe can specifically target miRNA with high sensitivity and specificity. The detection limit of the extracellular assay is as low as the picomolar level. In addition, we found that the probe could permeate cells and can be successfully applied in intracellular miRNA imaging, even achieving the distinction of cancer cells and normal cells, as well as the cancer cell lines with different miRNA expression levels.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, People's Republic of China
| | - Libing Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Dargah MM, Youseftabar-Miri L, Divsar F, Hosseinjani-Pirdehi H, Mahani M, Bakhtiari S, Montazar L. Triplex hairpin oligosensor for ultrasensitive determination of miRNA-155 as a cancer marker using Si quantum dots and Au nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124750. [PMID: 39003825 DOI: 10.1016/j.saa.2024.124750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
In this study, a new triplex hairpin oligosensor was developed for the determination of a breast cancer biomarker using silicon quantum dots (Si QD) (λex = 370 nm, λem = 482 nm) as donor and gold nanoparticles (GNP) as an acceptor in a FRET (fluorescence resonance energy transfer) mechanism. In the triplex hairpin oligosensor, a triplex-forming oligonucleotide (TFO) labeled with Si QD and a single-strand DNA labeled with GNP form a hairpin shape with a triplex structure at the hairpin stem. In a turn-on mechanism, the triplex hairpin stem is opened in the presence of sequence-specific miRNA-155 which leads to the release of the Si QD-labeled TFO probe and recovery of the fluorescence signal. About 80 % of the fluorescence intensity of the Si QD-TFO is quenched in the triplex hairpin structure of the oligosensor and in the presence of 800 pM miRNA-155, the fluorescence signal recovered to 57.7 % of its initial value. The LOD of about 10 pM was obtained. The designed triplex-based biosensor can discriminate concentrations of breast cancer biomarkers with high selectivity.
Collapse
Affiliation(s)
- Maryam Mohamadi Dargah
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Youseftabar-Miri
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.
| | | | - Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Shadi Bakhtiari
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Montazar
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
4
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
5
|
Khatun MA, Sultana F, Saha I, Karmakar P, Gazi HAR, Islam MM, Show B, Mukhopadhyay S. Lentil Extract-Mediated Ag QD Synthesis: Predilection for Albumin Protein Interaction, Antibacterial Activity, and Its Cytotoxicity for Wi-38 and PC-3 Cell Lines. ACS APPLIED BIO MATERIALS 2024; 7:6568-6582. [PMID: 39259615 DOI: 10.1021/acsabm.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent focus has been directed toward semiconductor nanocrystals owing to their unique physicochemical properties. Nevertheless, the synthesis and characterization of quantum dots (QDs) pose considerable challenges, limiting our understanding of their interactions within a biological environment. This research offers valuable insights into the environmentally friendly production of silver quantum dots (Ag QDs) using lentil extract and clarifies their distinct physicochemical characteristics, previously unexplored to our knowledge. These findings pave the path for potential practical applications. The investigation of the phytochemical-assisted Ag QDs' affinity for BSA demonstrated modest interactions, as shown by the enthalpy and entropy changes as well as the associated Gibbs free energy during their association. Steady-state and time-resolved fluorescence spectroscopy further demonstrated a transient effect involving dynamic quenching, predominantly driven by Forster resonance energy transfer. Additionally, the study highlights the potential broad-spectrum antibacterial activity of Ag QDs (<5 nm, a zeta potential of -3.04 mV), exhibiting a remarkable MIC value of 1 μg/mL against Gram-negative bacteria (E. coli) and 1.65 μg/mL against Gram-positive bacteria (S. aureus). They can readily enter cells and tissues due to their minuscule size and the right chemical environment. They cause intracellular pathway disruption, which leads to cell death. This outcome emphasizes the distinctive biocompatibility of the green-synthesized Ag QDs, which has been confirmed by their MTT assay-based cytotoxicity against the PC-3 and Wi-38 cell lines.
Collapse
Affiliation(s)
- Mst Arjina Khatun
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Ishita Saha
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Parimal Karmakar
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Harun Al Rasid Gazi
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Bibhutibhushan Show
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Subrata Mukhopadhyay
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| |
Collapse
|
6
|
Díaz-García D, Díaz-Sánchez M, Álvarez-Conde J, Gómez-Ruiz S. Emergence of Quantum Dots as Innovative Tools for Early Diagnosis and Advanced Treatment of Breast Cancer. ChemMedChem 2024; 19:e202400172. [PMID: 38724442 DOI: 10.1002/cmdc.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Quantum dots (QDs) semiconducting nanomaterials, have garnered attention due to their distinctive properties, including small size, high luminescence, and biocompatibility. In the context of triple-negative breast cancer (TNBC), notorious for its resistance to conventional treatments, QDs exhibit promising potential for enhancing diagnostic imaging and providing targeted therapies. This review underscores recent advancements in the utilization of QDs in imaging techniques, such as fluorescence tomography and magnetic resonance imaging, aiming at the early and precise detection of tumors. Emphasis is placed on the significance of QD design, synthesis and functionalization processes as well as their use in innovative strategies for targeted drug delivery, capitalizing on their ability to selectively deliver therapeutic agents to cancer cells. As the research in this field advances rapidly, this review covers a classification of QDs according to their composition, the characterization techniques than can be used to determine their properties and, subsequently, emphasizes recent findings in the field of TNBC-targeting, highlighting the imperative need to address challenges, like potential toxicity or methodologies standardization. Collectively, the findings explored thus far suggest that QDs could pave the way for early diagnosis and effective therapy of TNBC, representing a significant stride toward precise and personalized strategies in treating TNBC.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Javier Álvarez-Conde
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| |
Collapse
|
7
|
Wang H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024; 13:1277. [PMID: 39120308 PMCID: PMC11311607 DOI: 10.3390/cells13151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
8
|
Pan W, Niu H, Luo S, Chen L, Wu ZS. Intelligent Reconfiguration-Promoted Cellular Internalization of Core-Shell DNA Nanoprobe Equipped with Successive Dual Stimuli-Responsive Protective Satellites for Amplification Fluorescence Imaging of Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311388. [PMID: 38282377 DOI: 10.1002/smll.202311388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Although DNA probes have attracted increasing interest for precise tumor cell identification by imaging intracellular biomarkers, the requirement of commercial transfection reagents, limited targeting ligands, and/or non-biocompatible inorganic nanostructures has hampered the clinic translation. To circumvent these shortcomings, a reconfigurable ES-NC (Na+-dependent DNAzyme (E)-based substrate (S) cleavage core/shell DNA nanocluster (NC)) entirely from DNA strands is assembled for precise imaging of cancerous cells in a successive dual-stimuli-responsive manner. This nanoprobe is composed of a strung DNA tetrahedral satellites-based protective (DTP) shell, parallelly aligned target-responsive sensing (PTS) interlayer, and hydrophobic cholesterol-packed innermost layer (HCI core). Tetrahedral axial rotation-activated reconfiguration of DTP shell promotes the exposure of interior hydrophobic moieties, enabling cholesterol-mediated cellular internalization without auxiliary elements. Within cells, over-expressed glutathione triggers the disassembly of the DTP protective shell (first stimulus), facilitating target-stimulated signal transduction/amplification process (second stimuli). Target miRNA-21 is detected down to 10.6 fM without interference from coexisting miRNAs. Compared with transfection reagent-mediated counterpart, ES-NC displays a higher imaging ability, resists nuclease degradation, and has no detectable damage to healthy cells. The blind test demonstrates that the ES-NC is suitable for the identification of cancerous cells from healthy cells, indicating a promising tool for early diagnosis and prediction of cancer.
Collapse
Affiliation(s)
- Wenhao Pan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
9
|
Xiao S, Yang YT, Chen YF, Liu JL, Chai YQ, Yuan R. Polymerized carbon dots with high electrochemiluminescence efficiency and long wavelength ECL emission for ultrasensitive detection of MicroRNA-222. Biosens Bioelectron 2024; 254:116193. [PMID: 38479342 DOI: 10.1016/j.bios.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Herein, a new electrochemiluminescence (ECL) biosensor was constructed with highly efficient polymerized carbon dots (PCDs) as ECL emitter and the improved localized catalytic hairpin assembly (L-CHA) as signal amplifier for ultrasensitive detection of microRNA-222 (miRNA-222). Impressively, compared to the traditional carbon dots with inefficient blue region ECL emission, PCDs with N, O co-dope and large conjugated π-system showed high electrical conductivity, narrow band gap and strong radiative transition, which could exhibit high ECL efficiency to improve the sensitivity of detection and long wavelength ECL emission to achieve deep tissue penetration for reducing biological damage. Furthermore, the trace target miRNA-222 could be efficiently converted into large amounts of output DNA labelled with the quencher dopamine (S-DA) through the L-CHA reaction to significantly enhance the target amplification efficiency for further improving the sensitivity of detection. Thus, the ECL biosensor could achieve the ultrasensitive detection of miRNA-222 from 100 aM to 100 pM with the detection limit of 76 aM. Therefore, this work proposed a novel CDs with high ECL efficiency and long wavelength ECL emission, which not only was used to build an ultrasensitive biosensor for biomolecules detection in clinical diagnosis, but also served as a potential emitter for ECL bioimaging.
Collapse
Affiliation(s)
- Shuang Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical EngQneering, Southwest University, Chongqing, 400715, PR China
| | - Yu-Ting Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical EngQneering, Southwest University, Chongqing, 400715, PR China
| | - Yi-Fei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical EngQneering, Southwest University, Chongqing, 400715, PR China
| | - Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical EngQneering, Southwest University, Chongqing, 400715, PR China.
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical EngQneering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical EngQneering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Jin Z, Ma L, Zhang Y, Chen L, Yang H, Liu Y, Guo L. A highly sensitive fluorescence sensor for tobacco mosaic virus RNA based on DSN cycle and ARGET ATRP double signal amplification. LUMINESCENCE 2024; 39:e4804. [PMID: 38859763 DOI: 10.1002/bio.4804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Early and sensitive detection of tobacco mosaic virus (TMV) is of great significance for improving crop yield and protecting germplasm resources. Herein, we constructed a novel fluorescence sensor to detect TMV RNA (tRNA) through double strand specific nuclease (DSN) cycle and activator regenerative electron transfer atom transfer radical polymerization (ARGET ATRP) dual signal amplification strategy. The hairpin DNA complementarily paired with tRNA was used as a recognition unit to specifically capture tRNA. By the double-stranded DNA hydrolyzed with DSN, tRNA is released to open more hairpin DNA, and more complementary DNA (cDNA) is bound to the surface of the magnetic beads (MBs) to achieve the first amplification. After binding with the initiator, the cDNA employed ARGET ATRP to attach more fluorescent signal molecules to the surface of MBs, thus achieving the second signal amplification. Under the optimal experimental conditions, the logarithm of fluorescence intensity versus tRNA concentration showed a good linear relationship in the range of 0.01-100 pM, with a detection limit of 1.03 fM. The limit of detection (LOD) was calculated according to LOD = 3 N/S. Besides, the sensor showed good reproducibility and stability, which present provided new method for early and highly sensitive detection for plant viruses.
Collapse
Affiliation(s)
- Zhenyu Jin
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Lele Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Yuting Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Luyao Chen
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| |
Collapse
|
11
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
12
|
Wang Y, Hu Y, Xie R, Zeng Q, Hong Y, Chen X, Zhang P, Zeng L, Zhang Y, Zeng S, Yang H. Ultrasensitive label-free miRNA-21 detection based on MXene-enhanced plasmonic lateral displacement measurement. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4055-4062. [PMID: 39635639 PMCID: PMC11501375 DOI: 10.1515/nanoph-2023-0432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 12/07/2024]
Abstract
miRNAs are small non-coding RNA molecules which serve as promising biomarkers due to their important roles in the development and progression of various cancer types. The detection of miRNAs is of vital importance to the early-stage diagnostics and prognostics of multiple diseases. However, traditional detection strategies have faced some challenges owing to the intrinsic characteristics of miRNAs including small size, short sequence length, low concentration level and high sequence homology in complex real samples. To overcome these challenges, we proposed a MXene-enhanced plasmonic biosensor for real-time and label-free detection of miRNA. By utilizing MXene nanomaterial which possesses unique characteristics including large surface area and strong carrier confinement abilities, we tuned the absorption of our plasmonic sensing substrate to reach a "zero-reflection" state and induced an extremely sharp phase change at the resonance angle. Combined with the sensing mechanism based on phase-induced lateral displacement measurement, this MXene-enhanced plasmonic biosensor can achieve a much superior sensing performance compared to traditional SPR devices. Based on this biosensing scheme, the ultrasensitive detection of target miRNA with a detection limit down to 10 fM has been successfully demonstrated. More importantly, single-base mismatched miRNA can be easily distinguished from the target miRNA according to the sensing signal. Furthermore, our plasmonic biosensor is capable of detecting miRNA in complex media such as 100 % human serum samples without compromising the detection sensitivity. This MXene-enhanced plasmonic sensing scheme has the ability of detecting miRNAs with extremely low concentration levels in complex surrounding media without the need of introducing extra labels or amplification tags, which holds great potential in various biological applications and clinical diagnostics.
Collapse
Affiliation(s)
- Yuye Wang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yurui Hu
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Ruibin Xie
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Qi Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yanhang Hong
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xi Chen
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Pengcheng Zhang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Lin Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yi Zhang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000Troyes, France
| | - Hui Yang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
13
|
Li J, Qin J, Du F, Meng W, Tang D, Huang Y, Tang J. Multiorbital DNA walker nanoprobe for portable photothermal detection based on H 2S etching of cubic Prussian blue. Mikrochim Acta 2023; 190:382. [PMID: 37697070 DOI: 10.1007/s00604-023-05957-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
In the developed assay, multiorbital 3D DNA walker (MO DNA walker) was applied as signal amplified protocol for enhancing the detection signal of the photothermal biosensor, which was designed for sensitive detection of miRNA based on the H2S triggered conversation of photothermal reagent. When the target molecule is present, the DNA walking strand was released and then hybridize with track strands. The landing of walking particles (WPT) on the tracking particles (TPT) promotes the relative movement of the WPT around TPT, thus releasing large amount of horseradish peroxidase (HRP) with the aid of DNAzyme. After reacting with Na2S2O3 and H2O2, multiple H2S can be generated in situ based on the catalytic ability of HRP. Meanwhile, cubic Prussian blue (CPB) was synthesized and exhibited superior photothermal response, which can be served as efficient photothermal reagent and H2S responsive acceptor. Significantly, the photothermal signal of CPB could be obviously reduced after challenged with H2S ascribed to synchronous reaction between the ferric ion (Fe3+) and H2S. The improved walking area and freedom enable significant signal amplification, enhancing the biosensor's performance. Under ideal circumstances, the proposed photothermal assay demonstrated excellent performance for determination of miRNA-21.
Collapse
Affiliation(s)
- Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Jiao Qin
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Fan Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Wenqin Meng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yunhong Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| |
Collapse
|
14
|
Abudoubari S, Bu K, Mei Y, Maimaitiyiming A, An H, Tao N. Preliminary study on miRNA in prostate cancer. World J Surg Oncol 2023; 21:270. [PMID: 37641123 PMCID: PMC10464187 DOI: 10.1186/s12957-023-03151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE To screen for miRNAs differentially expressed in prostate cancer and prostate hyperplasia tissues and to validate their association with prostate cancer. METHODS Patients diagnosed by pathology in the Department of Urology of the First Affiliated Hospital of Xinjiang Medical University from October 2021 to June 2022 were selected, and their general clinical information, blood samples, and prostate tissue samples were collected. miRNA microarray technology was performed to obtain differentially expressed miRNAs in prostate cancer and hyperplasia tissues, and miRNAs to be studied were screened by microarray results and review of relevant literature. The detection of miRNA expression in the patients' blood and prostate tissue samples was measured. The miRNA-222-mimics were transfected into PC3 cells, and cell biology experiments such as CCK8, scratch, Transwell, and flow cytometry were performed to detect the effects of overexpressed miRNA-222 on the growth and proliferation, invasive ability, apoptotic ability, and metastatic ability of prostate cancer cells. RESULTS The results of the miRNA microarray showed that there were many differentially expressed miRNAs in prostate cancer and hyperplasia tissues, and four miRNAs, miRNA-144, miRNA-222, miRNA-1248, and miRNA-3651 were finally selected as the subjects by reviewing relevant literature. The results showed that the expression of miRNA-222 in prostate cancer tissues was lower than that in prostate hyperplasia tissues (P < 0.05). The expression of miRNA-222, miRNA-1248, and miRNA-3651 in blood samples of prostate cancer patients was lower than that in prostate hyperplasia patients (P < 0.05). The analysis results indicated that the f/t ratio and the relative expression of miRNA-222 and miRNA-1248 were independent influences of prostate cancer (P < 0.05), in which overexpression of miRNA-222 decreased the proliferative, invasive, and metastatic abilities of PC3 cells and enhanced the level of apoptosis of cancer cells. CONCLUSIONS Although there was no significant change in the overall incidence of prostate cancer in this study, significant changes occurred in the incidence of prostate cancer with different characteristics. In addition, the nomogram prediction model of prostate cancer-specific survival rate constructed based on four factors has a high reference value, which helps physicians to correctly assess the patient-specific survival rate and provides a reference basis for patient diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Saimaitikari Abudoubari
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Department of Radiology, The First People's Hospital of Kashi Prefecture, Kashi, 844700, Xinjiang, China
| | - Ke Bu
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yujie Mei
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | | | - Hengqing An
- The First Affiliated Hospital, Xinjiang Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
- Xinjiang Clinical Research Center for Genitourinary System, No. 393, Xinyi Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| | - Ning Tao
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Xinjiang Clinical Research Center for Genitourinary System, No. 393, Xinyi Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
15
|
Moetasam Zorab M, Mohammadjani N, Ashengroph M, Alavi M. Biosynthesis of Quantum Dots and Their Therapeutic Applications in the Diagnosis and Treatment of Cancer and SARS-CoV-2. Adv Pharm Bull 2023; 13:411-422. [PMID: 37646053 PMCID: PMC10460808 DOI: 10.34172/apb.2023.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 09/01/2023] Open
Abstract
Quantum dots (QDs) are semiconductor materials that range from 2 nm to 10 nm. These nanomaterials (NMs) are smaller and have more unique properties compared to conventional nanoparticles (NPs). One of the unique properties of QDs is their special optoelectronic properties, making it possible to apply these NMs in bioimaging. Different size and shape QDs, which are used in various fields such as bioimaging, biosensing, cancer therapy, and drug delivery, have so far been produced by chemical methods. However, chemical synthesis provides expensive routes and causes serious environmental and health issues. Therefore, various biological systems such as bacteria, fungi, yeasts, algae, and plants are considered as potent eco-friendly green nanofactories for the biosynthesis of QDs, which are both economic and environmentally safe. The review aims to provide a descriptive overview of the various microbial agents for the synthesis of QDs and their biomedical applications for the diagnosis and treatment of cancer and SARS-CoV-2.
Collapse
Affiliation(s)
| | - Navid Mohammadjani
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|
16
|
Wang C, Tang Y, Zhang B, Zhong Z, Zhao F, Zeng B. Sensitive photoelectrochemical immunosensor for carcinoembryonic antigen detection based on copolymer of thiophene and thiophene-3-acetic acid modified phosphate-doped Bi 2WO 6. Anal Chim Acta 2023; 1262:341243. [PMID: 37179060 DOI: 10.1016/j.aca.2023.341243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In this study, PO43- doped Bi2WO6 (BWO-PO) was prepared by hydrothermal method, and then copolymer of thiophene and thiophene-3-acetic acid (P(Th-T3A)) was chemically deposited on the BWO-PO surface. The introduction of PO43- created point defects, greatly improving the photoelectric catalytic performance of Bi2WO6; the copolymer semiconductor could form heterojunction with Bi2WO6 to promote the separation of photo-generated carriers, due to its proper band gap. Furthermore, the copolymer could enhance the light absorption ability and photo-electronic conversion efficiency. Hence, the composite had good photoelectrochemical properties. When it was combined with carcinoembryonic antibody through the interaction of -COOH groups of the copolymer and the end groups of antibody for constructing ITO-based PEC immunosensor, the resulting sensor exhibited superb response to carcinoembryonic antigen (CEA), with a wide linear range of 1 pg/mL-20 ng/mL, and a relatively low detection limit of 0.41 pg/mL. It also showed high anti-interference ability, stability, and simplicity. The sensor has been successfully applied to monitor the concentration of CEA in serum. The sensing strategy can also be applied to the detection of other markers by changing the recognition elements, hence it has good application potential.
Collapse
Affiliation(s)
- Chunfang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Bihong Zhang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, PR China
| | - Ziying Zhong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| |
Collapse
|
17
|
Ye Z, Liu Y, Pan M, Tao X, Chen Y, Ma P, Zhuo Y, Song D. AgInZnS quantum dots as anodic emitters with strong and stable electrochemiluminescence for biosensing application. Biosens Bioelectron 2023; 228:115219. [PMID: 36913885 DOI: 10.1016/j.bios.2023.115219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Quantum dots (QDs) have become promising electrochemiluminescence (ECL) emitters with high quantum yield and size-tunable luminescence. However, most QDs generate strong ECL emission at the cathode, developing anodic ECL-emitting QDs with excellent performance is challenging. In this work, low-toxic quaternary AgInZnS QDs synthesized by a one-step aqueous phase method were used as novel anodic ECL emitters. AgInZnS QDs exhibited strong and stable ECL emission and a low excitation potential, which could avoid the side reaction of oxygen evolution. Furthermore, AgInZnS QDs displayed high ECL efficiency (ΦECL) of 5.84, taking the ΦECL of Ru(bpy)32+/tripropylamine (TPrA) ECL system as 1. Compared to AgInS2 QDs without Zn doping and traditional anode luminescent CdTe QDs, the ECL intensity of AgInZnS QDs was 1.62 times and 3.64 times higher than that of AgInS2 QDs and CdTe QDs, respectively. As a proof-of-concept, we further designed an "on-off-on" ECL biosensor for detecting microRNA-141 based on a dual isothermal enzyme-free strand displacement reaction (SDR), which not only to achieve the cyclic amplification of the target and ECL signal, but also to construct a switch of the biosensor. The ECL biosensor had a wide linear range from 100 aM to 10 nM with a low detection limit of 33.3 aM. Together, the constructed ECL sensing platform is a promising tool for rapid and accurate diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yibing Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Meichen Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiuli Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
18
|
Masterson AN, Chowdhury NN, Fang Y, Yip-Schneider MT, Hati S, Gupta P, Cao S, Wu H, Schmidt CM, Fishel ML, Sardar R. Amplification-Free, High-Throughput Nanoplasmonic Quantification of Circulating MicroRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection. ACS Sens 2023; 8:1085-1100. [PMID: 36853001 DOI: 10.1021/acssensors.2c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is often detected at an advanced stage. Earlier diagnosis of PDAC is key to reducing mortality. Circulating biomarkers such as microRNAs are gaining interest, but existing technologies require large sample volumes, amplification steps, extensive biofluid processing, lack sensitivity, and are low-throughput. Here, we present an advanced nanoplasmonic sensor for the highly sensitive, amplification-free detection and quantification of microRNAs (microRNA-10b, microRNA-let7a) from unprocessed plasma microsamples. The sensor construct utilizes uniquely designed -ssDNA receptors attached to gold triangular nanoprisms, which display unique localized surface plasmon resonance (LSPR) properties, in a multiwell plate format. The formation of -ssDNA/microRNA duplex controls the nanostructure-biomolecule interfacial electronic interactions to promote the charge transfer/exciton delocalization processes and enhance the LSPR responses to achieve attomolar (10-18 M) limit of detection (LOD) in human plasma. This improve LOD allows the fabrication of a high-throughput assay in a 384-well plate format. The performance of nanoplasmonic sensors for microRNA detection was further assessed by comparing with the qRT-PCR assay of 15 PDAC patient plasma samples that shows a positive correlation between these two assays with the Pearson correlation coefficient value >0.86. Evaluation of >170 clinical samples reveals that oncogenic microRNA-10b and tumor suppressor microRNA-let7a levels can individually differentiate PDAC from chronic pancreatitis and normal controls with >94% sensitivity and >94% specificity at a 95% confidence interval (CI). Furthermore, combining both oncogenic and tumor suppressor microRNA levels significantly improves differentiation of PDAC stages I and II versus III and IV with >91% and 87% sensitivity and specificity, respectively, in comparison to the sensitivity and specificity values for individual microRNAs. Moreover, we show that the level of microRNAs varies substantially in pre- and post-surgery PDAC patients (n = 75). Taken together, this ultrasensitive nanoplasmonic sensor with excellent sensitivity and specificity is capable of assaying multiple biomarkers simultaneously and may facilitate early detection of PDAC to improve patient care.
Collapse
Affiliation(s)
- Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Nayela N Chowdhury
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Yue Fang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Prashant Gupta
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Huangbing Wu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - C Max Schmidt
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
19
|
Chen J, Chen X, Zhang Y, Wang X, Zhou N. Screening of a Sialyllactose-Specific Aptamer and Engineering a Pair of Recognition Elements with Unique Fluorescent Characteristics for Sensitive Detection of Sialyllactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2628-2636. [PMID: 36700646 DOI: 10.1021/acs.jafc.2c07784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A single-stranded DNA (ssDNA) aptamer specific for 6'-sialyllactose (6'-SL) was screened through magnetic separation-based SELEX and post-SELEX truncation and used to construct unique aptamer bio-dots for sensitive detection of 6'-SL. Eighteen rounds of screening were conducted during the SELEX process. The ssDNA aptamer Apt9 (Kd = 152.3 nM) with a length of 79 nucleotides (nt) was demonstrated as the optimal aptamer candidate after affinity and specificity evaluation. Then, Apt9 was truncated and optimized according to secondary structure and molecular docking. A 35 nt truncated aptamer Apt9-1 (Kd = 91.75 nM) with higher affinity than Apt9 was finally obtained. Furthermore, Apt9-1 was used to synthesize bio-dots as a new recognition element of 6'-SL, and the aminobenzene boric acid functionalized carbon dots were employed as the other recognition element. With the respective fluorescent characteristics, the two quantum dots (QDs) were made a pair to construct a 6'-SL fluorescent biosensor. The linear detection range of the biosensor is 10 μM to 5 mM, and the detection limit is 0.9 μM. With the advantages of time-saving, high efficiency, and simplicity in the actual sample detection, the screened aptamer and dual-QD-based biosensor have broad application prospects in 6'-SL detection.
Collapse
Affiliation(s)
- Jinri Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou 222005, China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Hu O, Li Z, Wu J, Tan Y, Chen Z, Tong Y. A Multicomponent Nucleic Acid Enzyme-Cleavable Quantum Dot Nanobeacon for Highly Sensitive Diagnosis of Tuberculosis with the Naked Eye. ACS Sens 2023; 8:254-262. [PMID: 36579361 DOI: 10.1021/acssensors.2c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical tuberculosis (TB) screening and diagnosis are crucial for controlling the spread of this life-threatening infectious disease. In this work, a novel, rapid, and simple colorimetric detection platform for TB was developed based on a quantum dot-based nanobeacon (QD-NB) and multicomponent nucleic acid enzyme (MNAzyme). In the presence of target DNA (IS1081 gene fragment), the recombinase polymerase amplification (RPA) was performed and the amplicons were chemically DNA-denatured and then subjected to MNAzyme reaction. RNA-cleaving MNAzyme assembly included the recognition of target DNA and hybridization with a QD-NB fluorescence probe. Under the addition of Mg2+, the RNA-containing QD-NB as a cleavable substrate could be broken into two DNA fragments, leading to green fluorescence release due to their departure from a black hole quencher (BHQ2). The TB detection could be achieved with the naked eye under a portable and inexpensive UV flashlight. Our results demonstrated that QD-NB-based MNAzyme colorimetric assays improved the detection sensitivity by 1 order of magnitude compared with the detection using RPA. The limit of detection (LOD) of the visual reading was as low as 2 copies/μL (3.3 amol/L). Excellent specificity and reproducibility could also be achieved. Furthermore, the practical application of the colorimetric method for TB diagnosis was verified by 36 clinical TB patients and 20 healthy individuals. The developed QD-NB-based MNAzyme colorimetric assays provided a rapid, convenient, sensitive, and accurate alternative for clinical TB screening and diagnosis.
Collapse
Affiliation(s)
- Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Zeyu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Jinghao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, Guangzhou 510095, P. R. China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Yanli Tong
- Guangdong Second Provincial General Hospital, Guangzhou, Guangzhou 510317, P. R. China
| |
Collapse
|
21
|
Yin T, Wu D, Du H, Jie G. Dual-wavelength electrochemiluminescence biosensor based on a multifunctional Zr MOFs@PEI@AuAg nanocomposite with intramolecular self-enhancing effect for simultaneous detection of dual microRNAs. Biosens Bioelectron 2022; 217:114699. [PMID: 36113302 DOI: 10.1016/j.bios.2022.114699] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Rapid parallel detection of multi-targets has always been an exploration aim in electrochemiluminescence (ECL) assays. Herein, a multifunctional nanocomposite of Zr metal-organic frameworks (MOFs) @PEI@AuAg nanoclusters (NCs) with intense and stable dual-wavelength ECL was synthesized for the first time, and used to construct a new ECL biosensor for rapid simultaneous detection of dual targets. Notably, the novel ECL emitter Zr MOFs with high-performance was not only integrated with a co-reactant polyethyleneimine (PEI) to form a unique intramolecular self-enhancing structure, but also loaded a large number of another ECL emitter AuAg NCs, furthermore, AuAg NCs with superior electron transfer property can much enhance the electrical conductivity of the composites, thus achieving the goal of "killing three birds with one stone". Moreover, a unique stable and rigid three-dimensional DNA tetrahedron (TDN) structure was connected with two quenching probes BHQ1 and BHQ3 and immobilized on the composites-modified electrode, so ECL emission of the nanocomposites at two wavelengths of 535 nm and 644 nm were both quenched by resonance energy transfer (RET). In the presence of target miRNAs, the efficient DNA cycling double-amplification processes were performed by using exonuclease (T7 Exo) combined with DNA Walker, thus both quenching groups were separated to restore the ECL at two wavelengths, achieving simultaneous and rapid ECL detection of two miRNAs. Therefore, this present work not only opens a unique nanocomplex with dual wavelength ECL and self-enhancing performance, but also develops a highly sensitive ECL biosensor with promising value for rapid multi-target analysis in clinical fields.
Collapse
Affiliation(s)
- Tengyue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Di Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Haotian Du
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
22
|
Immobilization of α-Amylase onto Quantum Dots Prepared from Hypericum perforatum L. Flowers and Hypericum capitatum Seeds: Its Physicochemical and Biochemical Characterization. Top Catal 2022. [DOI: 10.1007/s11244-022-01699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|