1
|
Xu J, Luo X, Cao C, Ling G, Zheng Y, Zhang W. A portability self-powered sensor facilitates sensitive Cd 2+ detection: Dual mechanism and three quantitative mode. Food Chem 2024; 459:140380. [PMID: 39003862 DOI: 10.1016/j.foodchem.2024.140380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xinqi Luo
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chengyuan Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ge Ling
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yue Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
2
|
Qian Y, Wang H, Qu Z, Li Q, Wang D, Yang X, Qin H, Wei H, Zhang F, Qing G. Synergistic color-changing and conductive photonic cellulose nanocrystal patches for sweat sensing with biodegradability and biocompatibility. MATERIALS HORIZONS 2024. [PMID: 39485285 DOI: 10.1039/d4mh01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Given the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA). The introduction of PA significantly enhances the hydrogen bonding interaction, resulting in the composite film with impressive flexibility (1.4 MJ m-3) and progressive color changes from blue, green, yellow, to ultimately red upon sweat wetting. Interestingly, this system simultaneously demonstrates selective and sensitive electrical sensing functions, as well as satisfactory biocompatibility, biodegradability, and breathability. Importantly, a proof-of-concept demonstration of a skin-adhesive patch is presented, where the optical and electrical dual-signal sweat sensing allows for intuitive visual and multimode electric localization of sweat accumulation during physical exercises. This innovative interactive strategy for monitoring human metabolites could offer a fresh perspective into the design of wearable health-sensing devices, while greatly expanding the applications of CNC-based photonic materials in medicine-related fields.
Collapse
Affiliation(s)
- Yi Qian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Hao Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Zhen Qu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xindi Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300000, P. R. China
| | - Haijie Wei
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Fusheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guangyan Qing
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
3
|
Chen Q, Li S, Tu X, Zhang X. Skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. Biosens Bioelectron 2024; 263:116606. [PMID: 39089190 DOI: 10.1016/j.bios.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The pH of human sweat is highly related with a variety of diseases, whereas the monitoring of sweat pH still remains challenging for ordinary families. In this study, we developed a novel dual-emission Tb-MOF using DPA as the ligand and further designed and constructed a skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. With the increased concentration of H+, the interaction of H+ with carbonyl organic ligand leads to the collapse of the Tb-MOF crystal structure, resulting in the interruption of antenna effect, and correspondingly increasing the emission of the ligand at 380 nm and decreasing the emission of the central ion Tb3+ at 544 nm. This Tb-MOF nanoprobe has a good linear response in the pH range of 4.12-7.05 (R2 = 0.9914) with excellent anti-interference ability. Based on the merits of fast pH response and high sensitivity, the nanoprobe was further used to prepare flexible wearable sensor. The wearable sensor can detect pH in the linear range of 3.50-6.70, which covers the pH range of normal human sweat (4.50-6.50). Subsequently, the storage stability and detection accuracy of the sensors were evaluated. Finally, the sensor has been successfully applied for the detection of pH in actual sweat samples from 21 volunteer and the real-time monitoring of pH variation during movement processing. This skin-attachable Tb-MOF sensor, with the advantages of low cost, visible color change and long shelf-life, is appealing for sweat pH monitoring especially for ordinary families.
Collapse
Affiliation(s)
- Qiulin Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Sheng Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiaoyan Tu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
4
|
Wang C, Zhu Z, Huang X, Wang X, Zhang L, Peng Y, Wan R, Han L, Li L, Qin X, Li H, Chen J. Recent Advances in Developing Optical and Electrochemical Sensors for Monitoring Thiram and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23024-23038. [PMID: 39396199 DOI: 10.1021/acs.jafc.4c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Thiram, as one widely used dithiocarbamate pesticide, has been considered seriously detrimental to food safety and human health because of poor efficiency, nonstandard/superfluous usage, and lack of a targeting effect. Developing high-performance sensors for thirams is strongly needed. With the rapid development of chemistry, biology, and materials science, many sensors have been constructed for thiram with high sensitivity and selectivity. Regarding the energy form of the signal, recognition mode, and detection principle, recent advances in the design and construction of optical and electrochemical sensors for thiram are summarized in this review, including colorimetric, luminescent, chemiluminescent, and electrochemical sensors. The advantages and disadvantages of the sensors for thiram including sensitivity, ability to avoid interference, recognition mechanism, signal output mode, and practicability are clarified in detail. Furthermore, the challenges faced, effective restrictions, and next direction of development are proposed for achieving more sensitive and selective analysis of thiram with less interference. We desire that this review will supply a solid theoretical basis and inspiration to generate innovative thinking for achieving new progress on thiram assays and the commercialization of the developed sensors in the future.
Collapse
Affiliation(s)
- Chenfei Wang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Zihan Zhu
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinda Huang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xuan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Li Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Yue Peng
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Rongyan Wan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Lirong Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Linsen Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinhong Qin
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Haiyin Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Jianling Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| |
Collapse
|
5
|
Mi Z, Xia Y, Dong H, Shen Y, Feng Z, Hong Y, Zhu H, Yin B, Ji Z, Xu Q, Hu X, Shu Y. Microfluidic Wearable Electrochemical Sensor Based on MOF-Derived Hexagonal Rod-Shaped Porous Carbon for Sweat Metabolite and Electrolyte Analysis. Anal Chem 2024; 96:16676-16685. [PMID: 39392225 DOI: 10.1021/acs.analchem.4c02950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Wearable sensors enable the noninvasive continuous analysis of biofluid, which is of great importance for healthcare monitoring. In this work, a wearable sensor was seamlessly integrated with a microfluidic chip which was prepared by a three-dimensional printing technology for noninvasive and multiplexed analysis of metabolite and electrolytes in human sweat. The microfluidic chip could enable rapid sampling of sweat, which avoids the sweat evaporation and contamination. Using a Zn metal-organic framework as a sacrificial template, the hexagonal rod-shaped porous carbon nanorod (PCN) with high porosity, a large specific surface area, and excellent conductivity was synthesized and exhibited the robust electrocatalytic ability of uric acid (UA) oxidation. Therefore, the PCN-based sensor showed high sensitivity and good selectivity of UA with a wide linear range of 10-200 μM and a low detection limit of 4.13 μM. Meanwhile, the potentiometry-based ion-selective electrode was constructed for detection of pH and K+, respectively, with good sensitivity, selectivity, reproducibility, and stability. In addition, the testing under different bending states demonstrated that mechanical deformation had little effect on the electrochemical performance of the wearable sensors. Furthermore, we evaluated the utility of the wearable sensor for multiplexed real-time analysis of UA, pH, and K+ in sweat during aerobic exercise, and the effect of the amount of consumed purine-rich foods on uric acid metabolite levels in sweat and urine was further investigated. The relationship between urine UA and sweat UA was obtained. Overall, this wearable sensor enables multiple electrolyte and metabolite analysis in different noninvasive biofluids, suggesting its potential application in personalized disease prevention.
Collapse
Affiliation(s)
- Ziyi Mi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Youyuan Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Huo Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yuhang Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ziyou Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yawen Hong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Haoyu Zhu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
6
|
Wang R, Guan C, Jin X, Chai J, Zhou F, Wang N, Song B. Sweat Pore-Inspired Functional Nanofiber Fabrics for Sweat Management and Simultaneous Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408465. [PMID: 39420703 DOI: 10.1002/smll.202408465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Functional fabric with directional sweat transport and simultaneous sweat detection is highly desirable in daily life due to its crucial role in ensuring exercise comfort and promoting health. Herein, the inspiration is drawn from both the perspiration function of sweat pores and the backflow prevention feature of the surrounding solid skin to develop bioinspired hydrophobic nanofiber fabric. When combined with commercial cotton, this fabric enables rapid discharge of sweat through the sweat pore-like channels at an ultrafast speed of 240 g s-1 m-2, while effectively preventing backflow around these channels to ensure highly efficient personal drying. The performance of the bioinspired nanofiber fabric surpasses that of five commercially available moisture-wicking fabrics by effectively guiding liquid transport while minimizing residual moisture accumulation on the inner side. Furthermore, a colorimetric analysis system is integrated into the bioinspired nanofiber fabric, which facilitates convenient sampling of sweat samples and detection of biomarkers in sweat such as chloride ion, calcium ion, and pH level. This innovative design based on the concept of sweat pores opens up new possibilities for developing intelligent fabrics, electronic skins, and point-of-care devices.
Collapse
Affiliation(s)
- Ruidong Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Chunsheng Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xuening Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jing Chai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Fujin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
7
|
Wu T, Yang P, Xie X, Cao X, Deng Y, Ding X, Zhang Z. Bio-inspired hierarchical wearable patch for fast sweat collection. Biosens Bioelectron 2024; 260:116430. [PMID: 38815465 DOI: 10.1016/j.bios.2024.116430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Sweat contains abundant physiological and metabolic data to evaluate an individual's physical health. Since the non-exercise sweat secretion rate is low, with an average value of 1-10 μl h-1 cm-2, sweat is generally collected during exercise for existing wearable sweat sensors. To expand their applications to include daily scenarios, these sensors developed for sports and fitness are challenged by the difficulty of collecting trace amounts of sweat. This study proposes a wearable patch inspired by the hierarchical structure of Sarracenia trichomes, allowing for the spontaneous and fast collection of a small amount of secreted sweat. The patch contains microfluidic channels featuring a 20 μm-wide rib structure, fully utilizing the capillary force, thereby eliminating the issue of sweat hysteresis. Furthermore, with only 0.5 μl of the sweat secreted at the collection site, it can converge on the detection medium located within the center reservoir. Volunteer verification demonstrated a twofold increase in sweat collection efficiency compared to traditional wearable patches. This patch serves as an efficient sweat-collection configuration, promising potential for diverse in situ sweat colorimetric analyses.
Collapse
Affiliation(s)
- Tianjie Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pufan Yang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xintong Xie
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xi Cao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujun Deng
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhinan Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Jin M, Su P, Huang X, Zhang R, Xu H, Wang Z, Su C, Katona JM, Ye Y. Micropatterned Polymer Nanoarrays with Distinct Superwettability for a Highly Efficient Sweat Collection and Sensing Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311380. [PMID: 38721961 DOI: 10.1002/smll.202311380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Indexed: 10/01/2024]
Abstract
Wearable sweat sensor offers a promising means for noninvasive real-time health monitoring, but the efficient collection and accurate analysis of sweat remains challenging. One of the obstacles is to precisely modulate the surface wettability of the microfluidics to achieve efficient sweat collection. Here a facile initiated chemical vapor deposition (iCVD) method is presented to grow and pattern polymer nanocone arrays with distinct superwettability on polydimethylsiloxane microfluidics, which facilitate highly efficient sweat transportation and collection. The nanoarray is synthesized by manipulating monomer supersaturation during iCVD to induce controlled nucleation and preferential vertical growth of fluorinated polymer. Subsequent selective vapor deposition of a conformal hydrogel nanolayer results in superhydrophilic nanoarray floor and walls within the microchannel that provide a large capillary force and a superhydrophobic ceiling that drastically reduces flow friction, enabling rapid sweat transport along varied flow directions. A carbon/hydrogel/enzyme nanocomposite electrode is then fabricated by sequential deposition of highly porous carbon nanoparticles and hydrogel nanocoating to achieve sensitive and stable sweat detection. Further encapsulation of the assembled sweatsensing patch with superhydrophobic nanoarray imparts self-cleaning and water-proof capability. Finally, the sweat sensing patch demonstrates selective and sensitive glucose and lactate detection during the on-body test.
Collapse
Affiliation(s)
- Minghui Jin
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Peipei Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiaocheng Huang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ruhao Zhang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - He Xu
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Zhenbo Wang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Cuicui Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jaroslav M Katona
- Faculty of Technology, University of Novi Sad, Novi Sad, Bul. Cara Lazara 1, Novi Sad, 21000, Serbia
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
9
|
Sun Y, Wang J, Lu Q, Zhang J, Li Y, Pang Y, Yang C, Wang Q, Kong D. Stretchable and Sweat-Wicking Patch for Skin-Attached Colorimetric Analysis of Sweat Biomarkers. ACS Sens 2024; 9:1515-1524. [PMID: 38447091 DOI: 10.1021/acssensors.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Stretchable sweat sensors are promising technology that can acquire biomolecular insights for health and fitness monitoring by intimate integration with the body. However, current sensors often require microfabricated microfluidic channels to control sweat flow during lab-on-body analysis, which makes effective and affordable sweat sampling a significant practical challenge. Here, we present stretchable and sweat-wicking patches that utilize bioinspired smart wettable membranes for the on-demand manipulation of sweat flow. In a scalable process, the membrane is created by stacking hydrophobic elastomer nanofibers onto soft microfoams with predefined two-dimensional superhydrophobic and superhydrophilic patterns. The engineered heterogeneous wettability distribution allows these porous membranes to achieve enhanced extraction and selective collection of sweat in embedded assays. Despite the simplified architecture, the color reactions between sweat and chemical indicators are inhibited from directly contacting the skin to achieve a largely improved operation safety. The sensing patches can simultaneously quantify pH, urea, and calcium in sweat through digital colorimetric analysis with smartphone images. The construction with all compliant materials renders these patches soft and stretchy to achieve conformal attachment to the skin. Successfully analyzing sweat compositions after physical exercises illustrates the practical suitability of these skin-attachable sensors for health tracking and point-of-care diagnosis.
Collapse
Affiliation(s)
- Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jianhui Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianying Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yushuang Pang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Qingqing X, Ruiyi L, Zaijun L. Designing of multifunctional graphene quantum dot-polyvinyl alcohol-polyglycerol luminescent film for fluorescence detection of pH in sweat. Anal Chim Acta 2024; 1292:342224. [PMID: 38309845 DOI: 10.1016/j.aca.2024.342224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Wound infection, skin disease, renal failure, cancer, cystic fibrosis, and other pathologies may induce obvious pH changes in sweat. Thus, tracking skin pH changes can help monitor human health in a convenient manner. Owing to their biocompatibility, easy preparation, and sensitive response to pH changes, graphene quantum dots (GQDs) have received increased attention in the optical detection of pH changes. However, their poor luminescent efficiency under visible light excitation and lack of functional diversification limit their application in skin pH monitoring. Therefore, the development of GQDs with excellent ultraviolet protection ability and antibacterial and luminescence performance is essential. RESULTS Folic acid-, histidine-, and serine-functionalized boron-doped graphene quantum dots (FHSB-GQDs) were designed and synthesized via thermal treatment. The resulting FHSB-GQDs exhibit strong yellow fluorescence emission under excitation with 490-nm visible light and sensitive pH responsiveness. The peak fluorescence intensity linearly decreases with increasing pH from 4 to 9. Furthermore, the FHSB-GQDs were integrated with polyvinyl alcohol and polyglycerol to form a luminescent film via hydrogen bond interactions. The film exhibits high transparency, mechanical flexibility, ultraviolet protection ability, and antibacterial activity. The presence of polyvinyl alcohol and polyglycerol restricts the free movement of the FHSB-GQDs and improves fluorescence behavior. The film was successfully applied in an intelligent pH-sensing system for monitoring pH changes in human sweat. SIGNIFICANCE The graphene quantum dot-polyvinyl alcohol-polyglycerol luminescent film offers excellent transparency, mechanical flexibility, ultraviolet protection ability, antibacterial activity, and luminescence performance. It was successfully applied in an intelligent pH sensing system for the detection of pH changes in human sweat. This study provides a new strategy for the design and construction of wearable sensing systems for health monitoring, facial masks, and medical dressings.
Collapse
Affiliation(s)
- Xie Qingqing
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li Ruiyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li Zaijun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Wang M, Lin B, Chen Y, Liu H, Ju Z, Lv R. Fluorescence-Recovered Wearable Hydrogel Patch for In Vitro Detection of Glucose Based on Rare-Earth Nanoparticles. ACS Biomater Sci Eng 2024; 10:1128-1138. [PMID: 38221709 DOI: 10.1021/acsbiomaterials.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The physiological state of the human body can be indicated by analyzing the composition of sweat. In this research, a fluorescence-recovered wearable hydrogel patch has been designed and realized which can noninvasively monitor the glucose concentration in human sweat. Rare-earth nanoparticles (RENPs) of NaGdF4 doped with different elements (Yb, Er, and Ce) are synthesized and optimized for better luminescence in the near-infrared second (NIR-II) and visible region. In addition, RENPs are coated with CoOOH of which the absorbance has an extensive peak in the visible and NIR regions. The concentration of H2O2 in the environment can be detected by the fluorescence recovery degree of CoOOH-modified RENPs based on the fluorescence resonance energy transfer effect. For in vivo detection, the physiological state of oxidative stress at tumor sites can be visualized through its fluorescence in NIR-II with low background noise and high penetration depth. For the in vitro detection, CoOOH-modified RENP and glucose oxidase (GOx) were doped into a polyacrylamide hydrogel, and a patch that can emit green upconversion fluorescence under a 980 nm laser was prepared. Compared with the conventional electrochemical detection method, the fluorescence we presented has higher sensitivity and linear detection region to detect the glucose. This improved anti-interference sweat patch that can work in the dark environment was obtained, and the physiological state of the human body is conveniently monitored, which provides a new facile and convenient method to monitor the sweat status.
Collapse
Affiliation(s)
- Min Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Yitong Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Hanyu Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ziyue Ju
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
12
|
Zhang J, Liu Z, Tang Y, Wang S, Meng J, Li F. Explainable Deep Learning-Assisted Self-Calibrating Colorimetric Patches for In Situ Sweat Analysis. Anal Chem 2024; 96:1205-1213. [PMID: 38191284 DOI: 10.1021/acs.analchem.3c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sweat has emerged as a compelling analyte for noninvasive biosensing technology because it contains a wealth of important biomarkers in hormones, organic biomacromolecules, and various ionic mixtures. These components offer valuable insights and can reflect an individual's physiological conditions. Here, we introduced an explainable deep learning (DL)-assisted wearable self-calibrating colorimetric biosensing analysis platform to efficiently and precisely detect the biomarker's concentration in sweat. Specifically, we have integrated the advantages of the colorimetric sensing method, adsorbing-swelling hydrogel, and explainable DL algorithms to develop an enzyme/indicator-immobilized colorimetric patch, which has reliable colorimetric sensing ability and excellent adsorbing-swelling function. A total of 5625 colorimetric images were collected as the analysis data set and assessed two DL algorithms and seven machine learning (ML) algorithms. Zn2+, glucose, and Ca2+ in human sweats could be facilely classified and quantified with 100% accuracy via the convolutional neural network (CNN) model, and the testing results of actual sweats via the DL-assisted colorimetric approach are 91.7-97.2% matching with the classical UV-vis spectrum. Class activation mapping (CAM) was utilized to visualize the inner working mechanism of CNN operation, which contributes to verify and explicate the design rationality of the noninvasive biosensing technology. An "end-to-end" model was established to ascertain the black box of the DL algorithm, promoted software design or principium optimization, and contributed facile indicators for health monitoring, disease prevention, and clinical diagnosis.
Collapse
Affiliation(s)
- Jiabing Zhang
- Xidian University, Xi'an 710071, P. R. China
- Graduate School of Medical School of Chinese PLA Hospital BeiJing, Beijing 100853, P. R. China
| | - Zhihao Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Yongtao Tang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- Graduate School of Medical School of Chinese PLA Hospital BeiJing, Beijing 100853, P. R. China
| | - Shuang Wang
- Xidian University, Xi'an 710071, P. R. China
| | - Jianxin Meng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Zheng XT, Goh WP, Yu Y, Sutarlie L, Chen DY, Tan SCL, Jiang C, Zhao M, Ba T, Li H, Su X, Yang L. Skin-Attachable Ink-Dispenser-Printed Paper Fluidic Sensor Patch for Colorimetric Sweat Analysis. Adv Healthc Mater 2024; 13:e2302173. [PMID: 37897264 DOI: 10.1002/adhm.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Indexed: 10/30/2023]
Abstract
In situ analysis of sweat biomarkers potentially provides noninvasive lifestyle monitoring and early diagnosis. Quantitative detection of sweat rate is crucial for thermoregulation and preventing heat injuries. Here, a skin-attachable paper fluidic patch is reported for in situ colorimetric sensing of multiple sweat markers (pH, glucose, lactate, and uric acid) with concurrent sweat rate tracking. Two sets of fluidic patterns-multiplexed detection zones and a longitudinal sweat rate channel-are directly printed by an automated ink dispenser from a specially developed ceramic-based ink. The ceramic ink thermal-cures into an impervious barrier, confining sweat within the channels. The ceramic-ink-printed boundary achieves higher pattern resolution, prevents fluid leakage, attains pattern thermal stability, and resistant to organic solvents. The cellulose matrix of the detection zones is modified with nanoparticles to improve the color homogeneity and sweat sensor sensitivity. The sweat rate channel is made moisture sensitive by incorporating a metal-salt-based dye. The change in saturation/color of the detection zones and/or channels upon sweat addition can be visually detected or quantified by a smartphone camera. A cost-effective way is provided to fabricate paper fluidic sensor patches, successfully demonstrating on-body multiplexed evaluation of sweat analytes. Such skin wearables offer on-site analysis, meaningful to an increasingly health-conscious population.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Der Ying Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore
| | - Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Meng Zhao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Te Ba
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore, 138632, Republic of Singapore
| | - Hongying Li
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore, 138632, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| |
Collapse
|
14
|
Yang H, Ji Y, Shen K, Qian Y, Ye C. Simultaneous detection of urea and lactate in sweat based on a wearable sweat biosensor. BIOMEDICAL OPTICS EXPRESS 2024; 15:14-27. [PMID: 38223175 PMCID: PMC10783907 DOI: 10.1364/boe.505004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
Urea and lactate are biomarkers in sweat that is closely associated with human health. This study introduces portable, rapid, sensitive, stable, and high-throughput wearable sweat biosensors utilizing Au-Ag nanoshuttles (Au-Ag NSs) for the simultaneous detection of sweat urea and lactate. The Au-Ag NSs arrays within the biosensor's microfluidic cavity provide a substantial surface-enhanced Raman scattering (SERS) enhancement effect. The limit of detection (LOD) for urea and lactate are 2.35 × 10-6 and 8.66 × 10-7 mol/L, respectively. This wearable sweat biosensor demonstrates high resistance to compression bending, repeatability, and stability and can be securely attached to various body parts. Real-time sweat analysis of volunteers wearing the biosensors during exercise demonstrated the method's practicality. This wearable sweat biosensor holds significant potential for monitoring sweat dynamics and serves as a valuable tool for assessing bioinformation in sweat.
Collapse
Affiliation(s)
- Haifan Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yangyang Ji
- Department of Science and Education, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 226300, China
| | - Kang Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Chenchen Ye
- Department of Science and Education, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, China
| |
Collapse
|
15
|
Li T, Chen X, Fu Y, Liao C. Colorimetric sweat analysis using wearable hydrogel patch sensors for detection of chloride and glucose. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5855-5866. [PMID: 37888873 DOI: 10.1039/d3ay01738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Sweat is a promising non-invasive biofluid that can provide valuable insights into the physiological state of the human body. However, a major obstacle to analyzing sweat in real-time is the fabrication of simple, fast-acting, accurate, and low-cost sensing constructs. To address this challenge, we introduced easily-prepared wearable hydrogel sensors that can be placed on the skin and used colorimetric techniques to assess sweat analytes without invasive procedures. Two typical sweat sensors, chloride ion (Cl-) responsive patches for cystic fibrosis (CF) analysis and glucose response patches for diabetic monitoring, were demonstrated for real sample analysis. The Cl- colorimetric sensor, with a detection limit down to 100 μM, shows a good linear response from 1.56 mM to 200 mM Cl-, and the glucose colorimetric sensor, with a detection limit down to 1 μM, exhibits an adequate linear response from 10 μM to 1 mM glucose. These colorimetric hydrogel sensors are also incorporated into a medical dressing to create wearable sensor devices for real-time sweat analysis. The acquired readings closely match the results obtained from the benchmark analyzing instrument, with a small deviation of less than 10%. Therefore, our simple colorimetric hydrogel sensing patches hold great potential to advance real-time sweat testing and contribute to the transitional development of wearable medical devices.
Collapse
Affiliation(s)
- Tuqiang Li
- Creative Biosciences (Guangzhou) Co., Ltd, Guangzhou, PR China.
| | - Xiaofeng Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Ying Fu
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| | - Caizhi Liao
- Creative Biosciences (Guangzhou) Co., Ltd, Guangzhou, PR China.
| |
Collapse
|
16
|
Clark KM, Ray TR. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics. ACS Sens 2023; 8:3606-3622. [PMID: 37747817 PMCID: PMC11211071 DOI: 10.1021/acssensors.3c01512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.
Collapse
Affiliation(s)
- Kaylee M. Clark
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI 96813, USA
| |
Collapse
|
17
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
18
|
Zhang Y, Liao J, Li Z, Hu M, Bian C, Lin S. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023; 260:124610. [PMID: 37146456 DOI: 10.1016/j.talanta.2023.124610] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Wearable sweat electrochemical sensors have attracted wide attention due to their advantages of non-invasive, portable, real-time monitoring, etc. However, existing sensors still have some problems with efficient sweat collection. Microfluidic channel technology and electrospinning technology are commonly used to collect sweat efficiently, but there are some limitations such as complex channel design and multiple spinning parameters. Besides, existing sensors are mostly based on flexible polymers, such as, PET, PDMS, PI and PI, which have limited wearability and permeability. Based on the above, all fabric and dual-function flexible wearable sweat electrochemical sensor is proposed in this paper. This sensor uses fabric as the raw material to implement the directional transport of sweat and the multi-component integrated detection dual functions. Meanwhile, the high-efficiency collection of sweat is obtained by a Janus fabric, wherein one side of the selected silk is superhydrophobic graft treated and the other side is hydrophilic plasma treated. Therefore, the resulting Janus fabric can effectively transfer sweat from the skin side to the electrode, and the minimum sweat droplet can reach 0.2 μL to achieve micro-volume collection. Besides, the patterned sensor, made of silk-based carbon cloth, is fabricated using a simple laser engraving, which could detect Na+, pH, and glucose instantaneously. As a result, these proposed sensors can achieve good sensing performance and high-efficiency sweat collection dual functionality; moreover, it has good flexibility and comfortable wearability.
Collapse
Affiliation(s)
- Yingwen Zhang
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianjun Liao
- School of Ecological and Environmental Sciences, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zehao Li
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingxu Hu
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiwei Lin
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
19
|
Zheng XT, Zhong Y, Chu HE, Yu Y, Zhang Y, Chin JS, Becker DL, Su X, Loh XJ. Carbon Dot-Doped Hydrogel Sensor Array for Multiplexed Colorimetric Detection of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17675-17687. [PMID: 37001053 DOI: 10.1021/acsami.3c01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein). The encapsulated enzymes in such a matrix exhibit improved enzyme kinetics and stability compared to those in pure hydrogels. Such a matrix also provides stable colorimetric responses for all five sensors. The sensor array exhibits high accuracy (recovery rates of 91.5-113.1%) and clinically relevant detection ranges for all five wound markers. The sensor array is established for simulated wound fluids and validated with rat wound fluids from perturbed wound models. Distinct color patterns are obtained that can clearly distinguish healing vs nonhealing wounds visually and quantitatively. This hydrogel sensor array shows great potential for on-site wound sensing due to its long-term stability, lightweight, and flexibility.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yingying Zhong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huan Enn Chu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Jiah Shin Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - David Lawrence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
20
|
Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023; 28:1259. [PMID: 36770925 PMCID: PMC9920341 DOI: 10.3390/molecules28031259] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Sweat contains a broad range of important biomarkers, which may be beneficial for acquiring non-invasive biochemical information on human health status. Therefore, highly selective and sensitive electrochemical nanosensors for the non-invasive detection of sweat metabolites have turned into a flourishing contender in the frontier of disease diagnosis. A large surface area, excellent electrocatalytic behavior and conductive properties make nanomaterials promising sensor materials for target-specific detection. Carbon-based nanomaterials (e.g., CNT, carbon quantum dots, and graphene), noble metals (e.g., Au and Pt), and metal oxide nanomaterials (e.g., ZnO, MnO2, and NiO) are widely used for modifying the working electrodes of electrochemical sensors, which may then be further functionalized with requisite enzymes for targeted detection. In the present review, recent developments (2018-2022) of electrochemical nanosensors by both enzymatic as well as non-enzymatic sensors for the effectual detection of sweat metabolites (e.g., glucose, ascorbic acid, lactate, urea/uric acid, ethanol and drug metabolites) have been comprehensively reviewed. Along with this, electrochemical sensing principles, including potentiometry, amperometry, CV, DPV, SWV and EIS have been briefly presented in the present review for a conceptual understanding of the sensing mechanisms. The detection thresholds (in the range of mM-nM), sensitivities, linear dynamic ranges and sensing modalities have also been properly addressed for a systematic understanding of the judicious design of more effective sensors. One step ahead, in the present review, current trends of flexible wearable electrochemical sensors in the form of eyeglasses, tattoos, gloves, patches, headbands, wrist bands, etc., have also been briefly summarized, which are beneficial for on-body in situ measurement of the targeted sweat metabolites. On-body monitoring of sweat metabolites via wireless data transmission has also been addressed. Finally, the gaps in the ongoing research endeavors, unmet challenges, outlooks and future prospects have also been discussed for the development of advanced non-invasive self-health-care-monitoring devices in the near future.
Collapse
Affiliation(s)
- Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Somrita Nag
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
21
|
Zhang L, Wang L, He S, Zhu C, Gong Z, Zhang Y, Wang J, Yu L, Gao K, Kang X, Song Y, Lu G, Yu HD. High-Performance Organic Electrochemical Transistor Based on Photo-annealed Plasmonic Gold Nanoparticle-Doped PEDOT:PSS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3224-3234. [PMID: 36622049 DOI: 10.1021/acsami.2c19867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic electrochemical transistors (OECTs), particularly the ones based on PEDOT:PSS, are excellent candidates for chemical and biological sensing because of their unique advantages. Improving the sensitivity and stability of OECTs is crucially important for practical applications. Herein, the transconductance of OECT is improved by 8-fold to 14.9 mS by doping the PEDOT:PSS channel with plasmonic gold nanoparticles (AuNPs) using a solution-based process followed by photo annealing. In addition, the OECT also possesses high flexibility and cyclic stability. It is revealed that the doping of AuNPs increases the conductivity of PEDOT:PSS and the photo annealing improves the crystallinity of the PEDOT:PSS channel and the interaction between AuNPs and PEDOT:PSS. These changes lead to the increase in transconductance and cyclic stability. The prepared OECTs are also demonstrated to be effective in sensitive detection of glucose within a wide concentration range of 10 nM-1 mM. Our OECTs based on photo-annealed plasmonic AuNP-doped PEDOT:PSS may find great applications in chemical and biological sensing, and this strategy may be extended to prepare many other high-performance OECT-based devices.
Collapse
Affiliation(s)
- Linrong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Li Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Shunhao He
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Chengcheng Zhu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Zhongyan Gong
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yulong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Junjie Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Liuyingzi Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Kun Gao
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Xing Kang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yaxin Song
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Gang Lu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Hai-Dong Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, PR China
| |
Collapse
|