1
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
2
|
Wang J, Hong D, Li J, Wang L, Xie Y, Da J, Liu Y. Activatable Multiplexed 19F NMR Probes for Dynamic Monitoring of Biomarkers Associated with Cellular Senescence. ACS MEASUREMENT SCIENCE AU 2024; 4:577-584. [PMID: 39430968 PMCID: PMC11487673 DOI: 10.1021/acsmeasuresciau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
Simultaneous detection of multiple biomarkers is crucial to achieve specific and dynamic analysis of cellular senescence, given its intrinsic high heterogeneity. Current approaches for senescence detection largely rely on fluorescence imaging, but fluorescent probes inevitably suffer from issues including autofluorescence and spectral overlap when being applied for the simultaneous detection of multiple biomarkers. Herein, we report an alternative strategy and design activatable multiplexed senoprobes based on 19F NMR for dynamic monitoring of cellular senescence. Differing from previous approaches, our strategy has two unique advantages. First, this strategy utilizes the changes in the 19F chemical shift as the signal output, which features by its fingerprint and quantifiable characters, thereby significantly enhancing the detection throughput toward biomarkers with minimized spectral overlapping. Second, the background signal is minimized, benefiting from the extremely low abundance of F in biological samples, and the detection accuracy can thus be improved. As a proof of concept, two activatable 19F NMR molecular probes are synthesized that specially respond to two key senescence-associated biomarkers (β-gal and ROS) and have been successfully demonstrated for dynamical and quantitative assessment of the changes of these biomarkers in different cellular models of senescence, without causing obvious cytotoxicity. Owing to the flexible molecular design, this work may offer a useful platform to create diversified 19F NMR senoprobes for deep understanding of cellular senescence across a wide range of aging-related diseases.
Collapse
Affiliation(s)
- Jian Wang
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Donghui Hong
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jun Da
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Iradukunda Y, Kang JY, Zhao XB, Fu XK, Nsanzamahoro S, Ha W, Shi YP. Triple Sensing Modes for Triggered β-Galactosidase Activity Assays Based on Kaempferol-Deduced Silicon Nanoparticles and Biological Imaging of MCF-7 Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:3154-3163. [PMID: 38695332 DOI: 10.1021/acsabm.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
β-Galactosidase (β-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor β-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine β-Gala activity effectively. Via the sensing performance, the catalytic activity of β-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-β-d-galactopyranoside (KOβDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing β-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of β-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Shandong University, Jinan City, Shandong 250100, PR China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| |
Collapse
|
4
|
Liu H, Lv R, Song F, Yang Y, Zhang F, Xin L, Zhang P, Zhang Q, Ding C. A near-IR ratiometric fluorescent probe for the precise tracking of senescence: a multidimensional sensing assay of biomarkers in cell senescence pathways. Chem Sci 2024; 15:5681-5693. [PMID: 38638232 PMCID: PMC11023058 DOI: 10.1039/d4sc00595c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Senescence is a complex physiological process that can be induced by a range of factors, and cellular damage caused by reactive oxygen species (ROS) is one of the major triggers. In order to learn and solve age-related diseases, tracking strategies through biomarkers, including senescence-associated β-galactosidase (SA-β-gal), with high sensitivity and accuracy, have been considered as a promising solution. However, endogenous β-gal accumulation is not only associated with senescence but also with other physiological processes. Therefore, additional assays are needed to define cellular senescence further. In this work, a fancy fluorescent probe SA-HCy-1 for accurately monitoring senescence is developed, with SA-β-gal and HClO as targets under high lysosomal pH conditions (pH > 6.0) specifically, on account of the role β-gal commonly played as an ovarian cancer biomarker. Therefore, precise tracking of cellular senescence could be achieved in view of these three dimensions, with response in dual fluorescence channels providing a ratiometric sensing pattern. This elaborate strategy has been verified to be suitable for biological applications by skin photo-aging evaluation and cellular passage tracing, displaying a significantly improved sensitivity compared with the commercial X-gal kit measurement.
Collapse
Affiliation(s)
- Haihong Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Ruidian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Fuxiang Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yaqun Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Fei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Liantao Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
5
|
Liu C, Mei Y, Yang H, Zhang Q, Zheng K, Zhang P, Ding C. Ratiometric Fluorescent Probe for Real-Time Detection of β-Galactosidase Activity in Lysosomes and Its Application in Drug-Induced Senescence Imaging. Anal Chem 2024. [PMID: 38315820 DOI: 10.1021/acs.analchem.3c05896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Senescence is an important biological process, which leads to the gradual degradation of its physiological function and increases morbidity and mortality. Herein, a novel ratiometric fluorescent probe (P1) was constructed by using benzothiazolyl acetonitrile dye as fluorophore, exhibiting significantly enhanced blue-shifted emission to indicate the activity of β-galactosidase (β-gal), a commonly used biomarker for the detection of senescent cells. After incubation with β-gal, the excimer emission of P1 at 620 nm was weakened, while the emission at 533 nm was significantly enhanced, forming an obvious ratiometric probe with high sensitivity and low detection limit (2.7 mU·mL-1). More importantly, probe P1 can locate lysosomes accurately, allowing us to monitor the emergence of living cell senescence in real time. P1 was successfully used to detect β-gal activity in PC-12 cells, Hep G2 cells, and RAW 264.7 cells. It showed strong green fluorescence signal in senescent cells and red fluorescence signal in normal cells, indicating that it can detect endogenous senescence-related β-gal content in living cells. For in vivo drug-induced senescence imaging, after 5 weeks of injection of D-galactose or hydroxyurea, the mice showed significant fluorescence enhancement in specific channels to indicate the activity of β-gal in vivo. At the same time, the senescence of cell-specific organs and skin tissues at the organ level were also detected, which proved that the drug-induced senescence of brain, skin, and muscle tissues was the most serious. These results supported the important application value of P1 in senescence biomedical research.
Collapse
Affiliation(s)
- Chengmei Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yu Mei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haifeng Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ke Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
6
|
Wang L, Li J, Zhao Z, Xia Y, Xie Y, Hong D, Liu Y, Tan W. Aptamer Conjugate-Based Ratiometric Fluorescent Probe for Precise Imaging of Therapy-Induced Cancer Senescence. Anal Chem 2024; 96:154-162. [PMID: 38113452 DOI: 10.1021/acs.analchem.3c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Therapy-induced cellular senescence has been increasingly recognized as a key mechanism to promote various aspects of carcinogenesis in a nonautonomous manner. Thus, real-time imaging monitoring of cellular senescence during cancer therapy is imperative not only to further elucidate its roles in cancer progression but also to provide guidance for medical management of cancer. However, it has long been a challenging task due to the lack of effective imaging molecule tools with high specificity and accuracy toward cancer senescence. Herein, we report the rational design, synthesis, and evaluation of an aptamer conjugate-based ratiometric fluorescent probe for precise imaging of therapy-induced cancer senescence. Unlike traditional senescence imaging systems, our probe targets two senescence-associated markers at both cellular and subcellular dimensions, namely, aptamer-mediated membrane marker recognition for active cell targeting and lysosomal marker-triggered ratiometric fluorescence changes of two cyanine dyes for site-specific, high-contrast imaging. Moreover, such a two-channel fluorescence response is activated after a one-step reaction and at the same location, avoiding the diffusion-caused signal decay previously encountered in dual-marker activated probes, contributing to spatiotemporally specific imaging of therapy-induced cancer senescence in living cells and three-dimensional multicellular tumor spheroids. This work may offer a valuable tool for a basic understanding of cellular senescence in cancer biology and interventions.
Collapse
Affiliation(s)
- Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhihui Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Donghui Hong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Feng B, Chu F, Bi A, Huang X, Fang Y, Liu M, Chen F, Li Y, Zeng W. Fidelity-oriented fluorescence imaging probes for beta-galactosidase: From accurate diagnosis to precise treatment. Biotechnol Adv 2023; 68:108244. [PMID: 37652143 DOI: 10.1016/j.biotechadv.2023.108244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Beta-galactosidase (β-gal), a typical glycosidase catalyzing the hydrolysis of glycosidic bonds, is regarded as a vital biomarker for cell senescence and cancer occurrence. Given the advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and being free of ionizing radiations, fluorescent imaging technology provides an excellent choice for in vivo imaging of β-gal. In this review, we detail the representative biotech advances of fluorescence imaging probes for β-gal bearing diverse fidelity-oriented improvements to elucidate their future potential in preclinical research and clinical application. Next, we propose the comprehensive design strategies of imaging probes for β-gal with respect of high fidelity. Considering the systematic implementation approaches, a range of high-fidelity imaging-guided theragnostic are adopted for the individual β-gal-associated biological scenarios. Finally, current challenges and future trends are proposed to promote the next development of imaging agents for individual and specific application scenarios.
Collapse
Affiliation(s)
- Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China; Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410078, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Yanbing Li
- Department of Clinical Laboratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China.
| |
Collapse
|
8
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
9
|
He Z, Xu K, Li Y, Gao H, Miao T, Zhao R, Huang Y. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. BIOSENSORS 2023; 13:838. [PMID: 37754071 PMCID: PMC10526510 DOI: 10.3390/bios13090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Specific identification and monitoring of senescent cells are essential for the in-depth understanding and regulation of senescence-related life processes and diseases. Fluorescent sensors providing real-time and in situ information with spatiotemporal resolution are unparalleled tools and have contributed greatly to this field. This review focuses on the recent progress in fluorescent sensors for molecularly targeted imaging and real-time tracking of cellular senescence. The molecular design, sensing mechanisms, and biological activities of the sensors are discussed. The sensors are categorized by the types of markers and targeting ligands. Accordingly, their molecular recognition and fluorescent performance towards senescence biomarkers are summarized. Finally, the perspective and challenges in this field are discussed, which are expected to assist future design of next-generation sensors for monitoring cellular senescence.
Collapse
Affiliation(s)
- Zhirong He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
| | - Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Miao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen S, Tang Y, Li Y, Huang M, Ma X, Wang L, Wu Y, Wang Y, Fan W, Hou S. Design and application of prodrug fluorescent probes for the detection of ovarian cancer cells and release of anticancer drug. Biosens Bioelectron 2023; 236:115401. [PMID: 37257317 DOI: 10.1016/j.bios.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Ovarian cancer is a gynecologic malignancy with high mortality. The main reason is that it is detected at an advanced stage due to a lack of early diagnosis and treatment. Therefore, it is of great interest to develop a chemical tool that can visualize ovarian cancer cells in real-time and eliminate them. Unfortunately, probes that can simultaneously monitor both modes of action for the diagnosis and treatment of ovarian cancer have not been developed. Here, we designed a novel prodrug fluorescent probe (YW-OAc) that not only visually tracks cancer cells but also enables the on-demand delivery of chemotherapeutic agents. By β-Gal-mediated glycosidic bond hydrolysis, the fluorescent signal changed from blue to green (signal 1), enabling visual tracking of ovarian cancer cells. Subsequently, the identified cancer cells were subjected to precise light irradiation to induce anticancer drug release accompanied by a fluorescence transition from green to blue (signal 2), enabling real-time information on drug release. Thus, the prodrug fluorescent probe YW-OAc provides comprehensive two-step monitoring during cancer cell recognition and clearance. Notably, YW-OAc exhibited high affinity (Km = 3.74 μM), high selectivity, and low detection limit for β-Gal (0.0035 U/mL). We also demonstrated that YW-OAc can visually trace endogenous β-Gal in different cells and exhibit high phototoxicity in ovarian cancer cells. We hope that the prodrug fluorescent probe YW-OAc, can be used as an effective tool for biomedical diagnosis and treatment.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yangyou Tang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Mingzhao Huang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yaping Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
11
|
Wang Z, Han D, Wang H, Zheng M, Xu Y, Zhang H. Organic Semiconducting Nanoparticles for Biosensor: A Review. BIOSENSORS 2023; 13:bios13040494. [PMID: 37185569 PMCID: PMC10136359 DOI: 10.3390/bios13040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Highly bio-compatible organic semiconductors are widely used as biosensors, but their long-term stability can be compromised due to photo-degradation and structural instability. To address this issue, scientists have developed organic semiconductor nanoparticles (OSNs) by incorporating organic semiconductors into a stable framework or self-assembled structure. OSNs have shown excellent performance and can be used as high-resolution biosensors in modern medical and biological research. They have been used for a wide range of applications, such as detecting small biological molecules, nucleic acids, and enzyme levels, as well as vascular imaging, tumor localization, and more. In particular, OSNs can simulate fine particulate matters (PM2.5, indicating particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) and can be used to study the biodistribution, clearance pathways, and health effects of such particles. However, there are still some problems that need to be solved, such as toxicity, metabolic mechanism, and fluorescence intensity. In this review, based on the structure and design strategies of OSNs, we introduce various types of OSNs-based biosensors with functional groups used as biosensors and discuss their applications in both in vitro and in vivo tracking. Finally, we also discuss the design strategies and potential future trends of OSNs-based biosensors. This review provides a theoretical scaffold for the design of high-performance OSNs-based biosensors and highlights important trends and future directions for their development and application.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Meng Zheng
- R&D Center of Polymer Materials, Qingdao Haiwan Science and Technology Industry Research Institute Co., Ltd. (HWSTI), Qingdao Haiwan Chemistry Co., Ltd. (QHCC), Qingdao, 266061, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
12
|
Li J, Wang L, Luo X, Xia Y, Xie Y, Liu Y, Tan W. Dual-Parameter Recognition-Directed Design of the Activatable Fluorescence Probe for Precise Imaging of Cellular Senescence. Anal Chem 2023; 95:3996-4004. [PMID: 36795559 DOI: 10.1021/acs.analchem.2c04223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Specific imaging of cellular senescence emerges as a promising strategy for early diagnosis and treatment of various age-related diseases. The currently available imaging probes are routinely designed by targeting a single senescence-related marker. However, the inherently high heterogeneity of senescence makes them inaccessible to achieve specific and accurate detection of broad-spectrum cellular senescence. Here, we report the design of a dual-parameter recognition fluorescent probe for precise imaging of cellular senescence. This probe remains silent in non-senescent cells, yet produces bright fluorescence after sequential responses to two senescence-associated markers, namely, SA-β-gal and MAO-A. In-depth studies reveal that this probe allows for high-contrast imaging of senescence, independent of the cell source or stress type. More impressively, such dual-parameter recognition design further allows it to distinguish senescence-associated SA-β-gal/MAO-A from cancer-related β-gal/MAO-A, compared to commercial or previous single-marker detection probes. This study offers a valuable molecular tool for imaging cellular senescence, which is expected to significantly expand the basic studies on senescence and facilitate advances of senescence-related disease theranostics.
Collapse
Affiliation(s)
- Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiyuan Luo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Wu Q, Zhou QH, Li W, Ren TB, Zhang XB, Yuan L. Evolving an Ultra-Sensitive Near-Infrared β-Galactosidase Fluorescent Probe for Breast Cancer Imaging and Surgical Resection Navigation. ACS Sens 2022; 7:3829-3837. [PMID: 36383027 DOI: 10.1021/acssensors.2c01752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early diagnosis and therapy are clinically crucial in decreasing mortality from breast carcinoma. However, the existing probes have difficulty in accurately identifying the margins and contours of breast carcinoma due to poor sensitivity and specificity. There is an urgent need to develop high-sensitive fluorescent probes for the diagnosis of breast carcinoma and for differentiating tumors from normal tissues during surgery. β-Galactosidase is a significant biomarker, whose overexpression is closely associated with the progression of breast tumors. Herein, we have constructed a β-galactosidase-activated fluorescent probe NIR-βgal-2 through rational design and molecular docking engineering simulations. The probe displayed superior sensitivity (detection limit = 2.0 × 10-3 U/mL), great affinity (Km = 1.84 μM), and catalytic efficiency (kcat/Km = 0.24 μM-1 s-1) for β-galactosidase. Leveraging this probe, we demonstrated the differentiation of cancer cells overexpressing β-galactosidase from normal cells and then applied the probe for intraoperative guided excision of breast tumors. Moreover, we exhibited the application of NIR-βgal-2 for the successful resection of orthotopic breast tumors by "in situ spraying" and monitored a good prognostic recovery. This work may promote the application of enzyme-activated near-infrared fluorescent probes for the development of carcinoma diagnosis and image-guided surgery.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian-Hui Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|