1
|
Jiang QQ, Li YJ, Wu Q, Wang X, Wang YA, Zhang R, Luo QX, Liang RP, Qiu JD. Efficient Charge Transfer Driven Electrochemiluminescence in Heteroatom-Involved Cocrystal Engineering for Detection of Uranyl Ions. Anal Chem 2024; 96:19740-19749. [PMID: 39574243 DOI: 10.1021/acs.analchem.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Embracing strategies that circumvent the complexities and disordered structures of electrochemiluminescence (ECL) emitters to improve charge transfer efficiency is crucial for advancing ECL technology to the forefront. Here, heteroatom-involved cocrystal engineering was introduced, constructing an ECL system with controllability of the charge transfer process. Through the mutual recognition and coassembly between functional monomers, highly ordered cocrystal superstructures are formed. The layered donor-acceptor arrays in cocrystals accelerated charge transfer, producing a remarkable ECL performance. Furthermore, distinct heteroatoms possess the capability to modulate the charge distribution of monomers by either pushing or pulling electrons. This modulation ultimately affects the charge transfer pathways within cocrystals, enabling ECL emissions of varying intensities and wavelengths. Notably, the presence of UO22+ would significantly inhibit the charge transfer in cocrystals, causing a quenching of ECL signal. This unique characteristic enables precise and selective detection of UO22+. The heteroatom-involved cocrystals hold immense potential to construct next-generation ECL emitters and create fresh opportunities for the advancement of ECL technology.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ying-Ao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
2
|
Yan Y, Ding L, Ding J, Zhou P, Su B. Recent Advances in Electrochemiluminescence Visual Biosensing and Bioimaging. Chembiochem 2024; 25:e202400389. [PMID: 38899794 DOI: 10.1002/cbic.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Electrochemiluminescence (ECL) is one of the most powerful techniques that meet the needs of analysis and detection in a variety of scenarios, because of its highly analytical sensitivity and excellent spatiotemporal controllability. ECL combined with microscopy (ECLM) offers a promising approach for quantifying and mapping a wide range of analytes. To date, ECLM has been widely used to image biological entities and processes, such as cells, subcellular structures, proteins and membrane transport properties. In this review, we first introduced the mechanisms of several classic ECL systems, then highlighted the progress of visual biosensing and bioimaging by ECLM in the last decade. Finally, the characteristics of ECLM were summarized, as well as some of the current challenges. The future research interests and potential directions for the application of ECLM were also outlooked.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Liu H, Wang Q, Cheng SB, Mao W, Mao L, Zhang X, Wang S, Huang WH, Chen MM. Dual Gold Nanostructures-Based Stretchable Electrochemiluminescence Sensors for Hydrogen Peroxide Monitoring in Endothelial Mechanotransduction. ACS Sens 2024. [PMID: 39510812 DOI: 10.1021/acssensors.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogen peroxide (H2O2) release during blood flow is commonly provoked by the cyclic stretch and dynamic shear stress of endothelial cells and is of vital significance for maintaining vascular function. Flexible and stretchable electrochemical sensors show great capability in retrieving mechanical stimulation-induced H2O2 variation; however, cell secretions, especially electroactive constituents' interferences, remain a big concern for sensing accuracy. Herein, we developed a stretchable electrochemiluminescence (ECL) sensor by synthesizing L012-reduced gold nanospheres and decorating them onto a polydimethylsiloxane film-supported gold nanotubes substrate (Au NTs/PDMS) to form dual gold nanostructure-modified meshwork interface. Given the specific reaction between L012 and H2O2, the as-prepared Au-L012/Au NTs/PDMS exhibited outstanding selectivity toward H2O2 quantification. Through culturing human umbilical vein endothelial cells (HUVECs), real-time monitoring of transient H2O2 release from mechanically sensitive HUVECs in stretching states was realized. This work successfully incorporated the ECL sensing model into in situ cellular sensing, therefore expanding the application mode of the ECL approach for health care and biomedical investigation.
Collapse
Affiliation(s)
- Hao Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qian Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shi-Bo Cheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wei Mao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Lebao Mao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miao-Miao Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Li H, Cai Q, Li P, Jie G. Zero-Background Dual-Mode Closed Bipolar Electrode Electrochemiluminescence Biosensor Based on ZnCoN-C Potential Regulation for Ultrasensitive Detection of Ochratoxin A. Anal Chem 2024. [PMID: 39140171 DOI: 10.1021/acs.analchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, the relationship between electrochemiluminescence (ECL) signal and driving voltage was first studied by self-made reduced and oxidized closed bipolar electrodes (CBPEs). It was found that when the driving voltage was large enough, the maximum ECL signals for the two kinds of CBPEs were the same but their required drive voltages were different. Zinc cobalt nitrogen doped carbon material (ZnCoN-C) had an outstanding electric double layer (EDL) property and conductivity. Therefore, it could significantly reduce the driving voltage of two kinds of CBPE systems, reaching the maximum ECL signal of Ru(bpy)32+. Interestingly, when the ZnCoN-C modified electrode reached the maximum ECL signal, the bare electrode signal was zero. As a proof-of-concept application, a zero-background dual-mode CBPE-ECL biosensor was constructed for the ultrasensitive detection of ochratoxin A (OTA) in beer. Considering that beer samples contained a large number of reducing substances, a reduced CBPE system was selected to build the biosensor. Furthermore, a convenient ECL imaging platform using a smartphone was built for the detection of OTA. This work used a unique EDL material ZnCoN-C to regulate the driving voltage of CBPE for the first time; thus, a novel zero-background ECL sensor was constructed. Further, this work provided a deeper understanding of the CBPE-ECL system and opened a new door for zero-background detection.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
5
|
Gao J, Jin HJ, Wei X, Ding XL, Li ZQ, Wang K, Xia XH. Closed Bipolar Nanoelectrode Array for Ultra-Sensitive Detection of Alkaline Phosphatase and Two-Dimensional Imaging of Epidermal Growth Factor Receptors. ACS Sens 2024; 9:3754-3762. [PMID: 38970501 DOI: 10.1021/acssensors.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The combination of closed bipolar electrodes (cBPE) with electrochemiluminescence (ECL) imaging has demonstrated remarkable capabilities in the field of bioanalysis. Here, we established a cBPE-ECL platform for ultrasensitive detection of alkaline phosphatase (ALP) and two-dimensional imaging of epidermal growth factor receptor (EGFR). This cBPE-ECL system consists of a high-density gold nanowire array in anodic aluminum oxide (AAO) membrane as the cBPE coupled with ECL of highly luminescent cadmium selenide quantum dots (CdSe QDs) luminophores to achieve cathodic electro-optical conversion. When an enzyme-catalyzed amplification effect of ALP with 4-aminophenyl phosphate monosodium salt hydrate (p-APP) as the substrate and 4-aminophenol (p-AP) as the electroactive probe is introduced, a significant improvement of sensing sensitivity with a detection limit as low as 0.5 fM for ALP on the cBPE-ECL platform can be obtained. In addition, the cBPE-ECL sensing system can also be used to detect cancer cells with an impressive detection limit of 50 cells/mL by labeling ALP onto the EGFR protein on A431 human epidermal cancer cell membranes. Thus, two-dimensional (2D) imaging of the EGFR proteins on the cell surface can be achieved, demonstrating that the established cBPE-ECL sensing system is of high resolution for spatiotemporal cell imaging.
Collapse
Affiliation(s)
- Jiao Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua-Jiang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuan Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Wu Y, Gu Q, Wang Z, Tian Z, Liu H, Liu S. Ultrasensitive Electrochemiluminescence Imaging Detection of Multiple miRNAs in Single Cells with a Closed Bipolar Electrode Array Chip. Anal Chem 2024; 96:12112-12119. [PMID: 38989957 DOI: 10.1021/acs.analchem.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In situ sensitive detection of multiple biomarkers in a single cell was highly necessary for understanding the pathogenesis mechanism and facilitating disease diagnosis. Herein, a bipolar electrode (BPE)-electrochemiluminescence (ECL) imaging chip was designed for ultrasensitive in situ detection of multiple miRNAs in single cells based on a dual-signal amplification strategy. A single cell was trapped and lysed within the microtrap of the cathode chamber and an HCR amplification process and nanoprobes (Fc/DNA/Fe3O4) were introduced, leading to a large number of electroactive molecules (Fc) being modified on the surface. Under a suitable potential, Fc+ in the cathodic chamber was reduced to Fc and L-012 was oxidized in the anodic chamber according to the electric neutrality principle of the bipolar electrode system, resulting in the ECL signal recorded by EMCCD. Ascribed to the dual-signal amplification, sensitive visual detection of miRNA-21 and miRNA-155 in single cells was achieved. For MCF-7 cells, miRNA-21 and miRNA-155 were calculated to be 4385 and 1932 copies/cell (median), respectively. For HeLa cells, miRNA-21 and miRNA-155 were calculated to be 1843 and 1012 copies/cell (median), respectively. The comprehensive evaluation of two kinds of miRNA could effectively eliminate error signals, and the detection precision was improved by 10%.
Collapse
Affiliation(s)
- Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qinglin Gu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhi Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214125, China
| | - Zhaoyan Tian
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hui Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Zhang X, Zhou Y, Wang H, Huang X, Shi Y, Zou Y, Hu X, Li Z, Shi J, Zou X. Energy difference-driven ROS reduction for electrochemical tracking crop growth sensitized with electron-migration nanostructures. Anal Chim Acta 2024; 1304:342515. [PMID: 38637032 DOI: 10.1016/j.aca.2024.342515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Aiming for sustainable crop productivity under changing climate conditions, it is essential to develop handy models for in-situ monitoring of reactive oxygen species (ROS). Herein, this work reports a simple electrochemical sensing toward hydrogen peroxide (H2O2) for tracking crop growth status sensitized with electron-migration nanostructure. To be specific, Cu-based metal-organic frameworks (MOFs) with high HOMO energy level are designed for H2O2 reduction on account of Cu(I)/Cu(II) redox switchability. Importantly, the sensing performance is improved by electrochemically reduced graphene oxide (GO) with ready to use feature. To overcome the shortcomings of traditional liquid electrolytes, conductive hydrogel as semi-solid electrolyte exhibits the adhesive property to the cut plant petiole surface. Benefitting from the preferred composite models and conductive hydrogel, the electrochemical sensing toward H2O2 with high sensitivity and good anti-interference against the coexistent molecules, well qualified for acquiring plant growth status.
Collapse
Affiliation(s)
- Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Yue Zhou
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Heng Wang
- Lianyungang Customs Integrated Technology Center, Lianyungang, 222042, PR China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China.
| |
Collapse
|
8
|
Li F, Zhou Y, Wang D, Ding Z, Chen L, Feng X. Oxygen Vacancy Engineering of FeO x toward Oxygen-Tolerant Hydrogen Peroxide Reduction for Reliable Bioassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3241-3247. [PMID: 38289291 DOI: 10.1021/acs.langmuir.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The accurate determination of hydrogen peroxide (H2O2), an important clinical disease relevant biomarker, is of great importance for the diagnosis and management of illnesses. By using the cathodic monitoring approach, H2O2 can be accurately detected because interfering signals from easily oxidizable endogenous and exogenous species in biofluids can be avoided. However, the simultaneous occurrence of the oxygen reduction reaction (ORR) restricts the practical use of this cathodic method. In this study, via oxygen vacancy modulation, we synthesized FeOx catalysts that can selectively reduce H2O2 over O2. The H2O2 detection system based on this catalyst exhibits an outstanding ORR inhibition ability. Furthermore, by integrating this catalyst with glucose oxidase, a model enzyme, a reliable bioassay system was developed that can selectively detect glucose over a wide variety of interferents in artificially simulated tissue fluids. The bioassay system employing this catalyst in conjunction with oxidases is generally applicable to accurate detect a wide range of biomarkers.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
9
|
Liu MM, Yang YJ, Guo ZZ, Zhong Y, Lei Y, Liu AL. A dual-readout sensing platform for the evaluation of cell viability integrating with optical and digital signals based on a closed bipolar electrode. Talanta 2023; 265:124881. [PMID: 37390672 DOI: 10.1016/j.talanta.2023.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Cell viability is essential for predicting drug toxicity and assessing drug effects in drug screening. However, the over/underestimation of cell viability measured by traditional tetrazolium colorimetric assays is inevitable in cell-based experiments. Hydrogen peroxide (H2O2) secreted by living cells may provide more comprehensive information about the cell state. Hence, it is significant to develop a simple and rapid approach for evaluating cell viability by measuring the excreted H2O2. In this work, we developed a dual-readout sensing platform based on optical and digital signals by integrating a light emitting diode (LED) and a light dependent resistor (LDR) into a closed split bipolar electrode (BPE), denoted as BP-LED-E-LDR, for evaluating cell viability by measuring the H2O2 secreted from living cells in drug screening. Additionally, the customized three-dimensional (3D) printed components were designed to adjust the distance and angle between the LED and LDR, achieving stable, reliable and highly efficient signal transformation. It only took 2 min to obtain response results. For measuring the exocytosis H2O2 from living cells, we observed a good linear relationship between the visual/digital signal and logarithmic function of MCF-7 cell counts. Furthermore, the fitted half inhibitory concentration curve of MCF-7 to doxorubicin hydrochloride obtained by the BP-LED-E-LDR device revealed a nearly identical tendency with the cell counting kit-8 assay, providing an attainable, reusable, and robust analytical strategy for evaluating cell viability in drug toxicology research.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan-Jie Yang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zi-Zhen Guo
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
10
|
Zhu F, Liu Z, Wu X, Xu D, Li Q, Chen X, Pang W, Duan X, Wang Y. Enhanced on-Chip modification and intracellular hydrogen peroxide detection via gigahertz acoustic streaming microfluidic platform. ULTRASONICS SONOCHEMISTRY 2023; 100:106618. [PMID: 37769590 PMCID: PMC10543187 DOI: 10.1016/j.ultsonch.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Developing effective strategies for the flexible control of fluid is vital for microfluidic electrochemical biosensing. In this study, a gigahertz (GHz) acoustic streaming (AS) based sonoelectrochemical system was developed to realize an on-chip surface modification and sensitive hydrogen peroxide (H2O2) detection from living cells. The flexible and controlled fluid surrounding the electrochemical chip was optimized theoretically and applied in the sonoelectrochemical deposition of Au nanoparticles (AuNPs) first. Under the steady and fast flow stimulus of AS, AuNPs could be synthesized with a smaller and evener size distribution than the normal condition, allowing AuNPs to show an excellent peroxidase-like activity. Moreover, the AS also accelerated the mass transport of target molecules and improved the catalytic rate, leading to the enhancement of H2O2 detection, with an extremely low detection limit of 32 nM and a high sensitivity of 4.34 μA/ (mM·mm2). Finally, this system was successfully applied in tracking H2O2 release from different cell lines to distinguish the cancer cells from normal cells. This study innovatively integrated the surface modification and molecules detection process on a chip, and also proposed a simple but sensitive platform for microfluidic biosensing application.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zeyu Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Die Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Yang X, Hang J, Qu W, Wang Y, Wang L, Zhou P, Ding H, Su B, Lei J, Guo W, Dai Z. Gold Microbeads Enabled Proximity Electrochemiluminescence for Highly Sensitive and Size-Encoded Multiplex Immunoassays. J Am Chem Soc 2023; 145:16026-16036. [PMID: 37458419 DOI: 10.1021/jacs.3c04250] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Developing highly sensitive multiplex immunoassays is urgently needed to guide medical research and improve clinical diagnosis. Here, we report the proximity electrochemiluminescence (ECL) generation enabled by gold microbeads (GMBs) for improving the detection sensitivity and multiplexing capacity of ECL immunoassays (ECLIAs). As demonstrated by microscopy and finite element simulation, GMBs can function as spherical ultramicroelectrodes for triggering ECL reactions in solutions. Employing GMBs as solid carriers in the bead-based ECLIA, the electrochemical oxidation of a coreactant can occur at both the GMB surface and the substrate electrode, allowing the coreactant radicals to diffuse only a short distance of ∼100 nm to react with ECL luminophores that are labeled on the GMB surface. The ECL generation via this proximity low oxidation potential (LOP) route results in a 21.7-fold increase in the turnover frequency of ECL generation compared with the non-conductive microbeads that rely exclusively on the conventional LOP route. Moreover, the proximity ECL generation is not restricted by the diffusion distance of short-lived coreactant radicals, which enables the simultaneous determination of multiple acute myocardial infarction biomarkers using size-encoded GMB-based multiplex ECLIAs. This work brings new insight into the understanding of ECL mechanisms and may advance the practical use of multiplex ECLIAs.
Collapse
Affiliation(s)
- Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junmeng Hang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yulan Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lei Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
12
|
Jiang QQ, Li YJ, Wu Q, Wang X, Luo QX, Mao XL, Cai YJ, Liu X, Liang RP, Qiu JD. Guest Molecular Assembly Strategy in Covalent Organic Frameworks for Electrochemiluminescence Sensing of Uranyl. Anal Chem 2023. [PMID: 37224420 DOI: 10.1021/acs.analchem.3c01299] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The application of covalent organic frameworks (COFs) in electrochemiluminescence (ECL) is promising in environmental monitoring. Developing an emerging design strategy to expand the class of COF-based ECL luminophores is highly desirable. Here, a COF-based host-guest system was constructed through guest molecular assembly to deal with nuclear contamination analysis. The efficient charge transport network was formed by inserting an electron-withdrawing guest tetracyanoquinodimethane (TCNQ) into the open space of the COF host (TP-TBDA; TP = 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde and TBDA = 2,5-di(thiophen-2-yl)benzene-1,4-diamine) with an electron-donating property; the construction of the COF-based host-guest system (TP-TBDA@TCNQ) triggered the ECL emission of non-emitting TP-TBDA. Furthermore, the dense active sites in TP-TBDA were utilized to capture the target substance UO22+. The presence of UO22+ broke the charge-transfer effect in TP-TBDA@TCNQ, resulting in the weakening of the ECL signal, thus the established ECL system integrating the low detection limit with high selectivity monitors UO22+. This COF-based host-guest system provides a novel material platform for constructing late-model ECL luminophores and creates an opportunity for the vigorous ECL technology.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
13
|
Liu Y, Cheng QY, Gao H, Chen HY, Xu JJ. Microfluidic Gradient Culture Arrays for Cell Pro-oxidation Analysis Using Bipolar Electrochemiluminescence. Anal Chem 2023; 95:8376-8383. [PMID: 37184375 DOI: 10.1021/acs.analchem.3c01123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A microfluidic gradient array is a widely used screening and analysis device, which has characteristics of high efficiency, high automation, and low consumption. Bipolar electrode electrochemiluminescence (BPE-ECL) has special value in microfluidic array chips. The combination of the microfluidic gradient and BPE arrays has potential for high-throughput screening. In this article, a microfluidic BPE array chip for gradient culture and conditional screening of cancer cells was designed. The generation of concentration gradients, continuous culture of cancer cells with high throughput, and drug screening through BPE-ECL of the Ru(bpy)32+/TPrA system can be performed in one chip. We tested gradient pro-oxidation of MCF-7 by ascorbic acid and the synergistic effect of pro-oxidation on doxorubicin. The method achieves high analysis efficiency through a BPE array while simplifying the tedious procedures required by cell culture methods.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiu-Yue Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Li X, Qin X, Wu Y, Wang K, Xia X, Liu S. Monitoring the electrochemical reactions on a gold nanoelectrode array via fluorescence-enabled electrochemical imaging. Chem Commun (Camb) 2022; 58:12499-12502. [DOI: 10.1039/d2cc05065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We first observed the electrochemical reaction on an independent gold nanoelectrode via super-resolution fluorescence imaging achieved by anchoring fluorescent molecules on the surface of the nanoelectrode and using an ionic liquid as the electrolyte.
Collapse
Affiliation(s)
- Xiuxiu Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xiang Qin
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Kang Wang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinghua Xia
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|