1
|
Wang R, Ma T, Jin Q, Xu C, Yang X, Wang K, Wang X. Waveguide-Based Microwave Nitric Oxide Sensor for COVID-19 Screening: Mass Transfer Modulation Effect on Hollow Confined WO 3 Structures. ACS Sens 2024. [PMID: 39442925 DOI: 10.1021/acssensors.4c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Serious acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a tremendous threat to global public health. Recently, the Food and Drug Administration approved the emergency use of volatile organic components as detection biomarkers for COVID-19, ushering in a new era of portable, simple, and rapid epidemiological screening based on breath diagnosis. Nitric oxide (NO) is an important biomarker indicating the degree of inflammation in the respiratory tract. In this study, a hollow multishelled structured WO3 (HoMSs-WO3)-based waveguide microwave gas sensor (MGS) was fabricated to detect trace levels of NO in exhaled breath for the preliminary diagnosis of COVID-19. The sensor showed excellent reusability and selectivity and efficiently detected NO in the 10-100 ppb, with a sensitivity of 39.27 dB/ppm and a detection limit of 2.52 ppb. In addition, a sound correlation was observed in the measurement results between the MGS and the Sunvou detector for detecting NO from the exhaled breath of clinical COVID-19 patients. The difference between the two measurements was within 1.96 standard bias, and the consistency range was -12 to 17 ppb, thus fully demonstrating the significant potential of the sensor in COVID-19 screening.
Collapse
Affiliation(s)
- Renshuo Wang
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Tiangang Ma
- The Central Laboratory of Jilin University Second Hospital, Department of Respiratory Medicine, The Second Norman Bethune Hospital of Jilin University, Changchun 130041, China
| | - Quan Jin
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chang Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun 130012, China
| | - Xianwang Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun 130012, China
| | - Ke Wang
- The Central Laboratory of Jilin University Second Hospital, Department of Respiratory Medicine, The Second Norman Bethune Hospital of Jilin University, Changchun 130041, China
| | - Xiaolong Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han YK. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Krishan Kumar
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
| | - Moein Safarkhani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Muhammad Umer
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| |
Collapse
|
3
|
Qin Y, Chen H, Luo Y, Zhang J, Zhou K, Leng Y, Zheng J, Chen Z. Platinum single atom on CsPbBr 3 nanocrystals as electrocatalyst boosts electrochemical sensing of ascorbic acid. Talanta 2024; 277:126396. [PMID: 38897004 DOI: 10.1016/j.talanta.2024.126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Monitoring ascorbic acid (AA) levels in human body can provide valuable clues for disease diagnosis. Anchoring noble metal single atoms on perovskite substrate is a promising strategy to design electrocatalysts with outstanding electrocatalytic performance. Herein, we design an electrochemical method for detecting AA by utilizing Pt single atoms-doped CsPbBr3 nanocrystals (Pt SA/CsPbBr3 NCs) fixed on a glassy carbon electrode as an electrochemical catalyst. The uncharged 3,5,3',5'-tetramethylbenzidine (TMB) undergoes oxidation to form the positively charged oxidized TMB (oxTMB) owing to the exceptional electrochemical catalytic performance of Pt SA/CsPbBr3 NCs. Subsequently, the target AA reduces oxTMB to TMB, which is then electrocatalytically oxidized to oxTMB, producing significant oxidation current. In this way, such characteristic provides a sensitive electrochemical strategy for AA detection, achieving a concentration range of 50-fold with the detection limit of 0.0369 μM. The developed electrochemical method also successfully generates accurate detection response of AA in complex sample media (urine). Overall, this approach is expected to offer a novel way for early disease diagnosis.
Collapse
Affiliation(s)
- Yuanlong Qin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hanzhang Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yu Luo
- Beijing Sunwise Information Technology Ltd. Beijing, 100086, China
| | - Jiayue Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kejia Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yumin Leng
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China.
| | - Jia Zheng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
4
|
Herrald AL, Ambrogi EK, Mirica KA. Electrochemical Detection of Gasotransmitters: Status and Roadmap. ACS Sens 2024; 9:1682-1705. [PMID: 38593007 PMCID: PMC11196117 DOI: 10.1021/acssensors.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.
Collapse
Affiliation(s)
- Audrey L Herrald
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
Zhu R, Gao J, Li M, Wu Y, Gao Q, Wu X, Zhang Y. Ultrasensitive Online NO Sensor Based on a Distributed Parallel Self-Regulating Neural Network and Ultraviolet Differential Optical Absorption Spectroscopy for Exhaled Breath Diagnosis. ACS Sens 2024; 9:1499-1507. [PMID: 38382078 DOI: 10.1021/acssensors.3c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The concentration of fractional exhaled nitric oxide (FeNO) is closely related to human respiratory inflammation, and the detection of its concentration plays a key role in aiding diagnosing inflammatory airway diseases. In this paper, we report a gas sensor system based on a distributed parallel self-regulating neural network (DPSRNN) model combined with ultraviolet differential optical absorption spectroscopy for detecting ppb-level FeNO concentrations. The noise signals in the spectrum are eliminated by discrete wavelet transform. The DPSRNN model is then built based on the separated multipeak characteristic absorption structure of the UV absorption spectrum of NO. Furthermore, a distributed parallel network structure is built based on each absorption feature region, which is given self-regulating weights and finally trained by a unified model structure. The final self-regulating weights obtained by the model indicate that each absorption feature region contributes a different weight to the concentration prediction. Compared with the regular convolutional neural network model structure, the proposed model has better performance by considering the effect of separated characteristic absorptions in the spectrum on the concentration and breaking the habit of bringing the spectrum as a whole into the model training in previous related studies. Lab-based results show that the sensor system can stably achieve high-precision detection of NO (2.59-750.66 ppb) with a mean absolute error of 0.17 ppb and a measurement accuracy of 0.84%, which is the best result to date. More interestingly, the proposed sensor system is capable of achieving high-precision online detection of FeNO, as confirmed by the exhaled breath analysis.
Collapse
Affiliation(s)
- Rui Zhu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jie Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mu Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yongqi Wu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiang Gao
- State Key Laboratory of Engines, School of Tianjin University, Tianjin 300072, China
| | - Xijun Wu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yungang Zhang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Jiao Y, Dong X, Ran X, Deng Q, Xiao H, Wang Z, Zhang T. Theoretical characterization of two-photon fluorescent probes for nitric oxide detection: sensing mechanism, photophysical properties and protonation effects. Phys Chem Chem Phys 2023; 25:19932-19942. [PMID: 37458714 DOI: 10.1039/d3cp01091k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Nitric oxide (NO) is an important signal molecule in biological systems and is correlated with many physiological processes and pathological diseases. To date, numerous fluorescent probes based on o-diamino aromatics have been designed and synthesized for NO detection utilizing the principle of photoinduced electron transfer (PET). However, the underlying PET mechanism has rarely been validated, and a systematic computational study on the photophysical properties is urgently desired. In this study, we used a theoretical protocol to comparatively investigate the sensing mechanism, photophysical properties and protonation effects of two emblematic probes NINO and PYSNO in aqueous solution, which combines a polarizable continuum model (PCM), time-dependent density functional theory (TD-DFT) and thermal vibration correlation function formalism (TVCF). Our findings reveal that the weak emission of NINO is due to activated PET with negative driving energy and blocked fluorescence with significant charge separation. In contrast, the poor luminescence of PYSNO is caused by the facilitated non-radiative dissipation, even though the fluorescence emission remains unobstructed. Although NINO has been successfully used in two-photon microscopy for detecting NO, we suggest that PYSNO possesses a superior two-photon absorption (TPA) cross section in the near-infrared region. The protonation effects suggest that both probes can function effectively in practical acidic lysosomal environments. Our study opens a new avenue for understanding the mechanism and predicting the properties of two-photon fluorescent probes for NO detection, thus aiding the rational design of efficient fluorescent sensors.
Collapse
Affiliation(s)
- Yawen Jiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Xiaoxu Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Xin Ran
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Qiyun Deng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
7
|
Shi X, Li J, Xiong Y, Liu Z, Zhan J, Cai B. Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection. NANOSCALE 2023; 15:6629-6635. [PMID: 36951617 DOI: 10.1039/d3nr00488k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.
Collapse
Affiliation(s)
- Xiaoyue Shi
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, 266061 Qingdao, China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China.
| | - Ziyu Liu
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, 250012, China.
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
| |
Collapse
|
8
|
Mirica KA. Materials Matter: Advancing Sensor Science through Innovation in Materials Chemistry. ACS Sens 2022; 7:3580-3581. [PMID: 36562175 DOI: 10.1021/acssensors.2c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|