1
|
Wang Z, Ma W, Wei J, Lan K, Yan S, Chen R, Qin G. High-performance peptide biosensor based on unified structure of lotus silk. Talanta 2024; 276:126280. [PMID: 38788380 DOI: 10.1016/j.talanta.2024.126280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The sensitive materials of current gas sensors are fabricated on planar substrates, significantly limiting the quantity of sensitive material available on the sensor and the complete exposure of the sensitive material to the target gas. In this work, we harnessed the finest, resilient, naturally degradable, and low-cost lotus silk derived from plant fibers, to fabricate a high-performance bio-sensor for toxic and harmful gas detection, employing peptides with full surface connectivity. The proposed approach to fabricate gas sensors eliminated the need for substrates and electrodes. To ascertain the effectiveness and versatility of the sensors created via this method, sensors for three distinct representative gases (isoamyl alcohol, 4-vinylanisole, and benzene) were prepared and characterized. These sensors surpassed reported detection limits by at least one order of magnitude. The inherent pliancy of lotus silk imparts adaptability to the sensor architecture, facilitating the realization of 1D, 2D, or 3D configurations, all while upholding consistent performance characteristics. This innovative sensor paradigm, grounded in lotus silk, represents great potential toward the advancement of highly proficient bio gas sensors and associated applications.
Collapse
Affiliation(s)
- Zhi Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China
| | - Weichao Ma
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Junqing Wei
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300072, PR China
| | - Kuibo Lan
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China
| | - Shanchun Yan
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Guoxuan Qin
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
2
|
Kumar P, Chandel M, Kataria S, Swami K, Kaur K, Sahu BK, Dadhich A, Urkude RR, Subaharan K, Koratkar N, Shanmugam V. Handheld Crop Pest Sensor Using Binary Catalyst-Loaded Nano-SnO 2 Particles for Oxidative Signal Amplification. ACS Sens 2024; 9:81-91. [PMID: 38113168 DOI: 10.1021/acssensors.3c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In agriculture, pest management is a major challenge. Crop releases volatiles in response to the pest; hence, sensing these volatile signals at a very early stage will ease pest management. Here, binary catalyst-loaded SnO2 nanoparticles of <5 nm were synthesized for the repeated capture and oxidation of the signature volatile and its products to amplify the chemoresistive signal to detect concentrations as low as ≈120 ppb. The sensitivity may be due to the presence of the elements in the Sn-Fe-Pt bond evidenced by extended X-ray absorption fine-structure spectroscopy (EXAFS) that captures and oxidize the volatile without escaping. This strong catalyst may oxidize nontarget volatiles and can cause false signals; hence, a molecular sieve filter has been coupled to ensure high selectivity for the detection ofTuta absolutainfestation in tomato. Finally, with the support of a mobile power bank, the optimized sensor has been assembled into a lightweight handheld device.
Collapse
Affiliation(s)
- Prem Kumar
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Mahima Chandel
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Sarita Kataria
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Kanchan Swami
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Mohali 140306, India
| | | | - Ankita Dadhich
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Rajashri R Urkude
- Accelerator Physics & Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Kesavan Subaharan
- ICAR - National Bureau of Agricultural Insect Resources, Bangalore 560064, India
| | - Nikhil Koratkar
- Materials Science Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | |
Collapse
|
3
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
4
|
Ji Z, Wei J, Luo F, Liu Z, Lu H, Chen R, Wang Y, Qin G. Investigating on sensing mechanism of MoS 2-FET biosensors in response to proteins. NANOTECHNOLOGY 2023; 34:435503. [PMID: 37506679 DOI: 10.1088/1361-6528/aceb6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional materials have gained extensive attention due to their high sensitivity, label-free detection capability, and fast response. Molybdenum disulfide (MoS2), with tunable bandgap, high surface-to-volume ratio, and smooth surface without dangling bonds, is a promising material for FET biosensors. Previous reports have demonstrated the fabrication of MoS2-FET biosensors and their high sensitivity detection of proteins. However, most prior research has focused on the realization of MoS2-FETs for detecting different kinds of proteins or molecules, while comprehensive analysis of the sensing mechanism and dominant device factors of MoS2-FETs in response to proteins is yet to investigate. In this study, we first fabricated MoS2-FET biosensor and detected different types of proteins (immunoglobulin G (IgG),β-actin, and prostate-specific antigen (PSA)). Secondly, we built the model of the device and analyzed the sensing mechanism of MoS2-FETs in response to proteins. Experimental and modeling results showed that the induced doping effect and gating effect caused by the target protein binding to the device surface were the major influential factors. Specifically, the channel doping concentration and gate voltage (Vg) offset exhibited monotonic change as the concentration of the protein solution increases. For example, the channel doping concentration increased up to ∼37.9% and theVgoffset was ∼-1.3 V with 10-7μgμl-1IgG. The change was less affected by the device size. We also investigated the effects of proteins with opposite acid-base properties (β-actin and PSA) to IgG on the device sensing mechanism.β-actin and PSA exhibited behavior opposite to that of IgG. Additionally, we studied the response behavior of MoS2-FETs with different dimensions and dielectric materials (channel length, MoS2thickness, dielectric layer thickness, dielectric layer material) to proteins. The underlying mechanisms were discussed in details. This study provides valuable guidelines for the design and application of MoS2-FET biosensors.
Collapse
Affiliation(s)
- Ziheng Ji
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic, Tianjin University, Tianjin 300072, People's Republic of China
| | - Junqing Wei
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fengting Luo
- Tianjin Hospital, Tianjin 300299, People's Republic of China
| | - Zihao Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haotian Lu
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
| | - Guoxuan Qin
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|