1
|
Chen YJ, Zhang H, Xiang FF, Chen SY, Wu M, Li K. Dual Enzyme-Locked Activation Reporter for Accurate Liver Cancer Surveillance. Anal Chem 2024; 96:12074-12083. [PMID: 38981066 DOI: 10.1021/acs.analchem.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Activatable probes with a higher signal-to-background ratio and accuracy are essential for monitoring liver cancer as well as intraoperative fluorescence navigation. However, the presence of only one biomarker is usually not sufficient to meet the high requirement of a signal-to-background ratio in cancer surveillance, leading to the risk of misdiagnosis. In this work, a dual-locked activation response probe, Si-NTR-LAP, for nitroreductase and leucine aminopeptidase was reported. This dual-locked probe provides better tumor recognition and a higher signal-to-noise ratio than that of single-locked probes (Si-LAP and Si-NTR). In both the subcutaneous tumor model and the more complex orthotopic hepatocellular carcinoma model, the probe was able to identify tumor tissue with high specificity and accurately differentiate the boundaries between tumor tissue and normal tissue. Therefore, the dual-locked probe may provide a new and practical strategy for applying to real patient tumor tissue samples.
Collapse
Affiliation(s)
- Yu-Jin Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hong Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fei-Fan Xiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Xu C, Cui K, Ye Z, Feng Y, Wang H, Liu HW. Recent Advances of Aminopeptidases-Responsive Small-Molecular Probes for Bioimaging. Chem Asian J 2024; 19:e202400052. [PMID: 38436107 DOI: 10.1002/asia.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Aminopeptidases, enzymes with critical roles in human body, are emerging as vital biomarkers for metabolic processes and diseases. Aberrant aminopeptidase levels are often associated with diseases, particularly cancer. Small-molecule probes, such as fluorescent, fluorescent/photoacoustics, bioluminescent, and chemiluminescent probes, are essential tools in the study of aminopeptidases-related diseases. The fluorescent probes provide real-time insights into protein activities, offering high sensitivity in specific locations, and precise spatiotemporal results. Additionally, photoacoustic probes offer signals that are able to penetrate deeper tissues. Bioluminescent and chemiluminescent probes can enhance in vivo imaging abilities by reducing the background. This comprehensive review is focused on small-molecule probes that respond to four key aminopeptidases: aminopeptidase N, leucine aminopeptidase, Pyroglutamate aminopeptidase 1, and Prolyl Aminopeptidase, and their utilization in imaging tumors and afflicted regions. In this review, the design strategy of small-molecule probes, the variety of designs from previous studies, and the opportunities of future bioimaging applications are discussed, serving as a roadmap for future research, sparking innovations in aminopeptidase-responsive probe development, and enhancing our understanding of these enzymes in disease diagnostics and treatment.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Medicine, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, 550200, China
| | - Kaixi Cui
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | - Zhifei Ye
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yurong Feng
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huabin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hong-Wen Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
3
|
Xu L, Jiang X, Liu Y, Liang K, Gao M, Kong B. Fluorogen-Functionalized Mesoporous Silica Hybrid Sensing Materials: Applications in Cu 2+ Detection. Chemistry 2024; 30:e202302589. [PMID: 37752657 DOI: 10.1002/chem.202302589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Since Cu2+ ions play a pivotal role in both ecosystems and human health, the development of a rapid and sensitive method for Cu2+ detection holds significant importance. Fluorescent mesoporous silica materials (FMSMs) have garnered considerable attention in the realm of chemical sensing, biosensing, and bioimaging due to their distinctive structure and easily functionalized surfaces. As a result, numerous Cu2+ sensors based on FMSMs have been devised and extensively applied in environmental and biological Cu2+ detection over the past few decades. This review centers on the recent advancements in the methodologies for preparing FMSMs, the mechanisms underlying sensing, and the applications of FMSMs-based sensors for Cu2+ detection. Lastly, we present and elucidate pertinent perspectives concerning FMSMs-based Cu2+ sensors.
Collapse
Affiliation(s)
- Lijie Xu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xiaoping Jiang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Yuhong Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Kang Liang
- School of Chemical Engineering Graduate, School of Biomedical Engineering, and Australian Centre for Nano Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Zhang H, Xiang FF, Liu YZ, Chen YJ, Zhou DH, Liu YH, Chen SY, Yu XQ, Li K. Molecular Engineering of Sulfone-Xanthone Chromophore for Enhanced Fluorescence Navigation. JACS AU 2023; 3:3462-3472. [PMID: 38155649 PMCID: PMC10751763 DOI: 10.1021/jacsau.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Enriching the palette of high-performance fluorescent dyes is vital to support the frontier of biomedical imaging. Although various rhodamine skeletons remain the premier type of small-molecule fluorophores due to the apparent high brightness and flexible modifiability, they still suffer from the inherent defect of small Stokes shift due to the nonideal fluorescence imaging signal-to-background ratio. Especially, the rising class of fluorescent dyes, sulfone-substituted xanthone, exhibits great potential, but low chemical stability is also pointed out as the problem. Molecular engineering of sulfone-xanthone to obtain a large Stokes shift and high stability is highly desired, but it is still scarce. Herein, we present the combination modification method for optimizing the performance of sulfone-xanthone. These redesigned fluorescent skeletons owned greatly improved stability and Stokes shift compared with the parent sulfone-rhodamine. To the proof of bioimaging capacity, annexin protein-targeted peptide LS301 was introduced to the most promising dyes, J-S-ARh, to form the tumor-targeted fluorescent probe, J-S-LS301. The resulting probe, J-S-LS301, can be an outstanding fluorescence tool for the orthotopic transplantation tumor model of hepatocellular carcinoma imaging and on-site pathological analysis. In summary, the combination method could serve as a basis for rational optimization of sulfone-xanthone. Overall, the chemistry reported here broadens the scope of accessible sulfone-xanthone functionality and, in turn, enables to facilitate the translation of biomedical research toward the clinical domain.
Collapse
Affiliation(s)
- Hong Zhang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Department
of Radiology, West China Hospital, Sichuan
University, No. 37, Guoxue
Street, Chengdu 610041, P. R. China
| | - Fei-Fan Xiang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Zhao Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yu-Jin Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Ding-Heng Zhou
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Hong Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Shan-Yong Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province,
Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Kun Li
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Li H, Shen Y, Dong Z, Li W, Yuan L. Rational Design of Tunable Near-Infrared Oxazine Probe with Large Stokes Shift for Leucine Aminopeptidase Detection and Imaging. Chem Asian J 2023; 18:e202300701. [PMID: 37733480 DOI: 10.1002/asia.202300701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Near-Infrared (NIR) fluorescence imaging with the advantages of deep tissue penetration and minimum background, has been widely employed and developed in the study of biological applications. However, small Stokes shifts, difficulty in optical tuning, and pH sensitivity are still the major limitations faced by current NIR dyes. To solve these problems, we rationally designed a pH insensitive amino-tunable NIR oxazine fluorophore DQF-NH2 , which exhibited large Stokes shift (125 nm) accompanied with NIR excitation/emission due to the introduction an asymmetrical alternating vibronic feature. By benefiting from the excellent photophysical properties of DQF-NH2 , we have successfully constructed the probe DQF-NH2 -LAP with the ability to detect endogenous LAP. Bioimaging assays demonstrated that DQF-NH2 -LAP can not only effectively detect LAP in living cells, but also was successfully applied to image tumor tissue in vivo. We anticipate that the functionalizable dye DQF-NH2 may be a potential new NIR dye platform with an optically tunable group for the development of future desirable probes for bioimaging.
Collapse
Affiliation(s)
- Haiyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhengkun Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|