1
|
Zhang Y, Hu C, Liu R, He S, Yang J, Yao W, Li Y, Guo X. Protein nanopore-based sensors for public health analyte detection. J Mater Chem B 2024; 12:9845-9862. [PMID: 39258387 DOI: 10.1039/d4tb01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
High-throughput and label-free protein nanopore-based sensors are extensively used in DNA sequencing, single-protein analysis, molecular sensing and chemical catalysis with single channel recording. These technologies show great potential for identifying various harmful substances linked to public health by addressing the limitations of current portability and the speed of existing techniques. In this review, we provide an overview of the fundamental principles of nanopore sensing, with a focus on chemical modification and genetic engineering strategies aimed at enhancing the detection sensitivity and identification accuracy of protein nanopores. The engineered protein nanopores enable direct sensing, while the introduction of aptamers and substrates enables indirect sensing, translating the physical structure and chemical properties of analytes into readable signals. These scientific discoveries and engineering efforts have provided new prospects for detecting and monitoring trace hazardous substances.
Collapse
Affiliation(s)
- Yanhua Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chan Hu
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Ronghui Liu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yi Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Wiswedel R, Bui ATN, Kim J, Lee MK. Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective. BIOSENSORS 2024; 14:345. [PMID: 39056622 PMCID: PMC11274599 DOI: 10.3390/bios14070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Biological nanopores are ultrasensitive and highly attractive platforms for disease diagnostics, including the sequencing of viral and microbial genes and the detection of biomarkers and pathogens. To utilize biological nanopores as diagnostic sensors, they have been engineered through various methods resulting in the accurate and highly sensitive detection of biomarkers and disease-related biomolecules. Among diverse biological nanopores, the β-barrel-containing nanopores have advantages in nanopore engineering because of their robust structure, making them well-suited for modifications. In this review, we highlight the engineering approaches for β-barrel-containing nanopores used in single-molecule sensing for applications in early diagnosis and prognosis. In the highlighted studies, β-barrel nanopores can be modified by genetic mutation to change the structure; alter charge distributions; or add enzymes, aptamers, and protein probes to enhance sensitivity and accuracy. Furthermore, this review discusses challenges and future perspectives for advancing nanopore-based diagnostic sensors.
Collapse
Affiliation(s)
- Rani Wiswedel
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Anh Thi Ngoc Bui
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
| | - Jinhyung Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Kyung Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Zhao C, Chen M, Liu X, Yuan W, Li K, Wang Y, Chen C, Zhang M, Dong Y, Xiao Y, Deng D, Geng J. Direct single-molecule detection of CoA-SH and ATP by the membrane proteins TMEM120A and TMEM120B. NANOSCALE 2024; 16:6087-6094. [PMID: 38444242 DOI: 10.1039/d3nr05054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Membrane proteins are vital resources for developing biosensors. TMEM120A is a membrane protein associated with human pain transmission and lipid metabolism, and recent studies have demonstrated its ability to transport ions and bind to coenzyme A (COA-SH), indicating its potential to develop into a single-molecule sensor based on electrical methods. In this study, we investigated the ion transport properties of TMEM120A and its homolog TMEM120B on an artificial lipid bilayer using single-channel recording. The results demonstrate that both proteins can fuse into the lipid bilayer and generate stable ion currents under a bias voltage. Based on the stable ion transport capabilities of TMEM120A and TMEM120B, as well as the feature of TMEM120A binding with COA-SH, we developed these two proteins into a single-molecule sensor for detecting COA-SH and structurally similar molecules. We found that both COA-SH and ATP can reversibly bind to single TMEM120A and TMEM120B proteins embedded in the lipid bilayer and temporarily block ion currents during the binding process. By analyzing the current blocking signal, COA-SH and ATP can be identified at the single-molecule level. In conclusion, our work has provided two single-molecule biosensors for detecting COA-SH and ATP, offering insights for exploring and developing bio-inspired small molecule sensors.
Collapse
Affiliation(s)
- Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Xiaofeng Liu
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weidan Yuan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Chen Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Ming Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yuhan Dong
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Yuling Xiao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dong Deng
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| |
Collapse
|
4
|
Peters M, McIntosh D, Branzan Albu A, Ying C, Gordon R. Label-Free Tracking of Proteins through Plasmon-Enhanced Interference. ACS NANOSCIENCE AU 2024; 4:69-75. [PMID: 38406310 PMCID: PMC10885339 DOI: 10.1021/acsnanoscienceau.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/27/2024]
Abstract
Single unmodified biomolecules in solution can be observed and characterized by interferometric imaging approaches; however, Rayleigh scattering limits this to larger proteins (typically >30 kDa). We observe real-time image tracking of unmodified proteins down to 14 kDa using interference imaging enhanced by surface plasmons launched at an aperture in a metal film. The larger proteins show slower diffusion, quantified by tracking. When the diffusing protein is finally trapped by the nanoaperture, we perform complementary power spectral density and noise amplitude analysis, which gives information about the protein. This approach allows for rapid protein characterization with minimal sample preparation and opens the door to characterizing protein interactions in real time.
Collapse
Affiliation(s)
- Matthew Peters
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre
for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Declan McIntosh
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandra Branzan Albu
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Cuifeng Ying
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science & Technology, Nottingham
Trent University, Nottingham NG11 8NS, U.K.
| | - Reuven Gordon
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre
for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
5
|
Wei X, Ma D, Ou J, Song G, Guo J, Robertson JW, Wang Y, Wang Q, Liu C. Narrowing Signal Distribution by Adamantane Derivatization for Amino Acid Identification Using an α-Hemolysin Nanopore. NANO LETTERS 2024; 24:1494-1501. [PMID: 38264980 PMCID: PMC10947511 DOI: 10.1021/acs.nanolett.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The rapid progress in nanopore sensing has sparked interest in protein sequencing. Despite recent notable advancements in amino acid recognition using nanopores, chemical modifications usually employed in this process still need further refinements. One of the challenges is to enhance the chemical specificity to avoid downstream misidentification of amino acids. By employing adamantane to label proteinogenic amino acids, we developed an approach to fingerprint individual amino acids using the wild-type α-hemolysin nanopore. The unique structure of adamantane-labeled amino acids (ALAAs) improved the spatial resolution, resulting in distinctive current signals. Various nanopore parameters were explored using a machine-learning algorithm and achieved a validation accuracy of 81.3% for distinguishing nine selected amino acids. Our results not only advance the effort in single-molecule protein characterization using nanopores but also offer a potential platform for studying intrinsic and variant structures of individual molecules.
Collapse
Affiliation(s)
- Xiaojun Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Dumei Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Junlin Ou
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Ge Song
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Jiawei Guo
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Yi Wang
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|