1
|
Gu Y, Li Y, Wu Q, Wu Z, Sun L, Shang Y, Zhuang Y, Fan X, Yi L, Wang S. Chemical antifouling strategies in sensors for food analysis: A review. Compr Rev Food Sci Food Saf 2023; 22:4074-4106. [PMID: 37421317 DOI: 10.1111/1541-4337.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Surface biofouling induced by the undesired nonspecific adsorption of foulants (e.g., coexisting proteins and cells) in food matrices is a major issue of sensors for food analysis, hindering their reliability and accuracy of sensing. This issue can be addressed by developing antifouling strategies to prevent or alleviate nonspecific binding. Chemical antifouling strategies involve the use of chemical modifiers (i.e., antifouling materials) to strongly hydrate the surface and reduce surface biofouling. Through appropriate immobilization approaches, antifouling materials can be tethered onto sensors to form antifouling surfaces with well-ordered structures, balanced surface charges, and appropriate surface density and thickness. A rational antifouling surface can reduce the matrix effect, simplify sample pretreatment, and improve analytical performance. This review summarizes recent developments in chemical antifouling strategies in sensing. Surface antifouling mechanisms and common antifouling materials are described, and factors that may influence the antifouling effects of antifouling surfaces and approaches incorporating antifouling materials onto sensing surfaces are highlighted. Moreover, the specific applications of antifouling sensors in food analysis are introduced. Finally, we provide an outlook on future developments in antifouling sensors for food analysis.
Collapse
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yonghui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qiyue Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zhongdong Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Kim JH, Cho CH, Shin JH, Yang JC, Park TJ, Park J, Park JP. Highly sensitive and label-free detection of influenza H5N1 viral proteins using affinity peptide and porous BSA/MXene nanocomposite electrode. Anal Chim Acta 2023; 1251:341018. [PMID: 36925304 DOI: 10.1016/j.aca.2023.341018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Influenza viruses are known to cause pandemic flu through inter-human and animal-to-human transmissions. Neuraminidase (NA), which is a surface glycoprotein of both influenza A and B viruses, is a minor immunogenic determinant; however, it has been proposed as an ideal candidate for a real testing. We successfully identified an affinity peptide which is specific to the influenza H5N1 virus NA via phage display technique and observed initially its binding affinities using enzyme-linked immunosorbent assay (ELISA). In addition, four synthetic peptides were chemically synthesized to develop an affinity peptide-based electrochemical biosensing system. Among all peptides tested, INA BP2 was selected as a potential candidate and subjected to square-wave voltammetry (SWV) for evaluating their detection performance. To enhance analytical performance, a three-dimensional porous bovine serum albumin (BSA)-MXene (BSA/MXene) matrix was applied. The surface morphology of the BSA/MXene film-deposited electrode was analyzed using X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Using SWV measurement, the BSA/MXene nanocomposite-based peptide sensor exhibited significant the dissociation constant (Kd = 9.34 ± 1.20 nM) and the limit of detection (LOD, 0.098 nM), resulting in good reproducibility, stability and recovery, even in the presence with spiked human plasma. These results demonstrate an alternative way of new bioanalytical sensing platform for developing more desirable sensitivity in other virus detection.
Collapse
Affiliation(s)
- Ji Hong Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chae Hwan Cho
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jin Chul Yang
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
3
|
Electro-polymerization rates of diazonium salts are dependent on the crystal orientation of the surface. J Colloid Interface Sci 2022; 626:985-994. [PMID: 35839679 DOI: 10.1016/j.jcis.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023]
Abstract
Electro-polymerization of diazonium salts is widely used for modifying surfaces with thin organic films. Initially this method was primarily applied to carbon, then to metals, and more recently to semiconducting Si. Unlike on other surfaces, electrochemical reduction of diazonium salts on Si, which is one of the most industrially dominant material, is not well understood. Here, we report the electrochemical reduction of diazonium salts on a range of silicon electrodes of different crystal orientations (111, 211, 311, 411, and 100). We show that the kinetics of surface reaction and the reduction potential is Si crystal-facet dependent and is more favorable in the hierarchical order (111) > (211) > (311) > (411) > (100), a finding that offers control over the surface chemistry of diazonium salts on Si. The dependence of the surface reaction kinetics on the crystal orientation was found to be directly related to differences in the potential of zero charge (PZC) of each crystal orientation, which in turn controls the adsorption of the diazonium cations prior to reduction. Another consequence of the effect of PZC on the adsorption of diazonium cations, is that molecules terminated by distal diazonium moieties form a compact film in less time and requires less reduction potentials compared to that formed from diazonium molecules terminated by only one diazo moiety. In addition, at higher concentrations of diazonium cations, the mechanism of electrochemical polymerization on the surface becomes PZC-controlled adsorption-dominated inner-sphere electron transfer while at lower concentrations, diffusion-based outer-sphere electron transfer dominates. These findings help understanding the electro-polymerization reaction of diazonium salts on Si en route towards an integrated molecular and Si electronics technology.
Collapse
|
4
|
Skvortsova A, Trelin A, Kriz P, Elashnikov R, Vokata B, Ulbrich P, Pershina A, Svorcik V, Guselnikova O, Lyutakov O. SERS and advanced chemometrics – Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment. Anal Chim Acta 2022; 1192:339373. [DOI: 10.1016/j.aca.2021.339373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022]
|
5
|
Suni II. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. BIOSENSORS 2021; 11:239. [PMID: 34356710 PMCID: PMC8301891 DOI: 10.3390/bios11070239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials. Early research focused on the use of Au electrodes, with immobilization of biomolecules through ω-functionalized Au-thiol self-assembled monolayers (SAMs), but stability is usually inadequate due to the weak Au-S bond strength. Other noble substrates such as C, Pt, and Si have also been studied. While their nobility has the advantage of ensuring biocompatibility, it also has the disadvantage of making them relatively unreactive towards covalent bond formation. With the exception of Sn-doped In2O3 (indium tin oxide, ITO), most metal oxides are not electrically conductive enough for use within electrochemical biosensors. Recent research has focused on transition metal dichalcogenides (TMDs) such as MoS2 and on electrically conductive polymers such as polyaniline, polypyrrole, and polythiophene. In addition, the deposition of functionalized thin films from aryldiazonium cations has attracted significant attention as a substrate-independent method for biofunctionalization.
Collapse
Affiliation(s)
- Ian Ivar Suni
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA; ; Tel.: +1-618-453-7822
- School of Chemistry and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- School of Mechanical, Aerospace and Materials Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
6
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
7
|
Wu T, Fitchett CM, Brooksby PA, Downard AJ. Building Tailored Interfaces through Covalent Coupling Reactions at Layers Grafted from Aryldiazonium Salts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11545-11570. [PMID: 33683855 DOI: 10.1021/acsami.0c22387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aryldiazonium ions are widely used reagents for surface modification. Attractive aspects of their use include wide substrate compatibility (ranging from plastics to carbons to metals and metal oxides), formation of stable covalent bonding to the substrate, simplicity of modification methods that are compatible with organic and aqueous solvents, and the commercial availability of many aniline precursors with a straightforward conversion to the active reagent. Importantly, the strong bonding of the modifying layer to the surface makes the method ideally suited to further on-surface (postfunctionalization) chemistry. After an initial grafting from a suitable aryldiazonium ion to give an anchor layer, a target species can be coupled to the layer, hugely expanding the range of species that can be immobilized. This strategy has been widely employed to prepare materials for numerous applications including chemical sensors, biosensors, catalysis, optoelectronics, composite materials, and energy conversion and storage. In this Review our goal is first to summarize how a target species with a particular functional group may be covalently coupled to an appropriate anchor layer. We then review applications of the resulting materials.
Collapse
Affiliation(s)
- Ting Wu
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| | - Christopher M Fitchett
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| | - Paula A Brooksby
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
8
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
Hetemi D, Noël V, Pinson J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. BIOSENSORS-BASEL 2020; 10:bios10010004. [PMID: 31952195 PMCID: PMC7168266 DOI: 10.3390/bios10010004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/31/2023]
Abstract
This review is divided into two parts; the first one summarizes the main features of surface modification by diazonium salts with a focus on most recent advances, while the second part deals with diazonium-based biosensors including small molecules of biological interest, proteins, and nucleic acids.
Collapse
Affiliation(s)
- Dardan Hetemi
- Pharmacy Department, Medical Faculty, University of Prishtina, “Hasan Prishtina”, Rr. “Dëshmorët e Kombit” p.n., 10000 Prishtina, Kosovo;
| | - Vincent Noël
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France;
| | - Jean Pinson
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France;
- Correspondence:
| |
Collapse
|
10
|
An antifouling peptide-based biosensor for determination of Streptococcus pneumonia markers in human serum. Biosens Bioelectron 2019; 151:111969. [PMID: 31999579 DOI: 10.1016/j.bios.2019.111969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022]
Abstract
We report a peptide-based sensor that involves a multivalent interaction with L-ascorbate 6-phosphate lactonase (UlaG), a protein marker of Streptococcus pneumonia. By integrating the antifouling feature of the sensor, we significantly improved the signal-to-noise ratio of UlaG detection. The antifouling surface was fabricated via electrodeposition using an equivalent mixture of 4-amino-N,N,N-trimethylanilinium and 4-aminobenzenesulfonate. This antifouling layer not only effectively reduces the non-specific adsorption on the biosensor but also decreases the charge transfer resistance (Rct) of the screen-printed carbon electrode. The aniline-modified S7 peptide, an UlaG-binding peptide, was pre-synthesized and further electrochemically modified to bind onto the antifouling layer. Bio-electrochemical analysis confirms that the antifouling S7-peptide sensor binds strongly to the UlaG with a dissociation constant (Kd) = 0.5 nM. This strong interaction can be attributed to a multivalent interaction between the biosensor and the heximeric form of UlaG. To demonstrate the potential for clinical application, further detection of Streptococcus pneumonia from 50 to 5×104 CFU/mL were successfully performed in 25% human serum.
Collapse
|
11
|
Guselnikova O, Trelin A, Skvortsova A, Ulbrich P, Postnikov P, Pershina A, Sykora D, Svorcik V, Lyutakov O. Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage. Biosens Bioelectron 2019; 145:111718. [PMID: 31561094 DOI: 10.1016/j.bios.2019.111718] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 01/09/2023]
Abstract
Taking advantage of surface-enhanced Raman scattering (SERS) methodology with its unique ability to collect abundant intrinsic fingerprint information and noninvasive data acquisition we set up a SERS-based approach for recognition of physically induced DNA damage with further incorporation of artificial neural network (ANN). As a proof-of-concept application, we used the DNA molecules, where the one oligonucleotide (OND) was grafted to the plasmonic surface while complimentary OND was exposed to UV illumination with various exposure doses and further hybridized with the grafted counterpart. All SERS spectra of entrapped DNA were collected by several operators using the portable spectrometer, without any optimization of measurements procedure (e.g., optimization of acquisition time, laser intensity, finding of optimal place on substrate, manual baseline correction, etc.) which usually takes a significant amount of operator's time. The SERS spectra were employed as input data for ANN training, and the performance of the system was verified by predicting the class labels for SERS validation data, using a spectra dataset, which has not been involved in the training process. During that phase, accuracy higher than 98% was achieved with a level of confidence exceeding 95%. It should be noted that utilization of the proposed functional-SERS/ANN approach allows identifying even the minor DNA damage, almost invisible by control measurements, performed with common analytical procedures. Moreover, we introduce the advanced ANN design, which allows not only classifying the samples but also providing the ANN analysis feedback, which associates the spectral changes and chemical transformations of DNA structure.
Collapse
Affiliation(s)
- O Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - A Trelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - A Skvortsova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - P Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - P Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - A Pershina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation; Siberian State Medical University, 2, Moskovsky Trakt, 634050, Tomsk, Russia
| | - D Sykora
- Department of Analytical Chemistry, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - V Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - O Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation.
| |
Collapse
|
12
|
Shen MY, Huang TY, Luo CH, Huang YC, Tsai YH, Wang TL, Yu HH. Inexpensive Synthesis of Poly(Ethylenedioxythiophene-Sulfobetaine) Films with High Bio-Antifouling Ability. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mo-Yuan Shen
- Smart Organic Material Laboratory; Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang; Taipei 115 Republic of China
| | - Tzu-Yang Huang
- Smart Organic Material Laboratory; Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang; Taipei 115 Republic of China
| | - Chun-Hao Luo
- Smart Organic Material Laboratory; Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang; Taipei 115 Republic of China
| | - Yu-Chun Huang
- Smart Organic Material Laboratory; Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang; Taipei 115 Republic of China
| | - Yu-Han Tsai
- Smart Organic Material Laboratory; Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang; Taipei 115 Republic of China
| | - Tian-Lin Wang
- Smart Organic Material Laboratory; Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang; Taipei 115 Republic of China
| | - Hsiao-hua Yu
- Smart Organic Material Laboratory; Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang; Taipei 115 Republic of China
| |
Collapse
|
13
|
Cao C, Zhang Y, Jiang C, Qi M, Liu G. Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5031-5049. [PMID: 28124552 DOI: 10.1021/acsami.6b16108] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aryldiazonium salts as coupling agents for surface chemistry have evidenced their wide applications for the development of sensors. Combined with advances in nanomaterials, current trends in sensor science and a variety of particular advantages of aryldiazonium salt chemistry in sensing have driven the aryldiazonium salt-based sensing strategies to grow at an astonishing pace. This review focuses on the advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors during the past decade. It will first summarize the current methods for modification of interfaces with aryldiazonium salts, and then discuss the sensing applications of aryldiazonium salts modified on different transducers (bulky solid electrodes, nanomaterials modified bulky solid electrodes, and nanoparticles). Finally, the challenges and perspectives that aryldiazonium salt chemistry is facing in sensing applications are critically discussed.
Collapse
Affiliation(s)
- Chaomin Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Yin Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford , Oxford OX1 2JD, United Kingdom
| | - Meng Qi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Guozhen Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
- ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University , North Ryde 2109, Australia
| |
Collapse
|
14
|
Aryldiazonium salt derived mixed organic layers: From surface chemistry to their applications. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Jiang C, Alam MT, Parker SG, Darwish N, Gooding JJ. Strategies To Achieve Control over the Surface Ratio of Two Different Components on Modified Electrodes Using Aryldiazonium Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2509-17. [PMID: 26901641 DOI: 10.1021/acs.langmuir.5b04550] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Controlling the composition of an interface is very important in tuning the chemical and physical properties of a surface in many applications including biosensors, biomaterials, and chemical catalysis. Frequently, this requires one molecular component to a minor component in a mixed layer. Such subtle control of composition has been difficult to achieve using aryldiazonium salts. Herein, aryldiazonium salts of carboxyphenyl (CP) and phenylphosphorylcholine (PPC), generated in situ from their corresponding anilines, are electrografted to form molecular platform that are available for further functionalization. These two components are chosen because CP provides a convenient functionality for further coupling of biorecognition species while PPC offers resistance to nonspecific adsorption of proteins to the surface. Mixed layers of CP and PPC were prepared by grafting them either simultaneously or consecutively. The latter strategy allows an interface to be developed in a controlled way where one component is at levels of less than 1% of the total layer.
Collapse
Affiliation(s)
- Cheng Jiang
- School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Muhammad Tanzirul Alam
- School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Stephen G Parker
- School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Nadim Darwish
- School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales , Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales , Sydney, NSW 2052, Australia
| |
Collapse
|