1
|
Olowolagba AM, Idowu MO, Arachchige DL, Aworinde OR, Dwivedi SK, Graham OR, Werner T, Luck RL, Liu H. Syntheses and Applications of Coumarin-Derived Fluorescent Probes for Real-Time Monitoring of NAD(P)H Dynamics in Living Cells across Diverse Chemical Environments. ACS APPLIED BIO MATERIALS 2024; 7:5437-5451. [PMID: 38995885 PMCID: PMC11333170 DOI: 10.1021/acsabm.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose-response experiments provide conclusive evidence of probe C's specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C's selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C's efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C's utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.
Collapse
Affiliation(s)
- Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Micah Olamide Idowu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Olivya Rose Graham
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
2
|
Magesh K, Yueh Hsun L, Wu SP, Velmathi S. Mitochondrial Targetable Turn-On Fluorescent Probe for Fast Detection of NAD(P)H in Living Cells and In Vivo. ACS APPLIED BIO MATERIALS 2024; 7:5679-5688. [PMID: 39075817 DOI: 10.1021/acsabm.4c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Using colorimetric and fluorescent probes has garnered significant interest in detecting NAD(P)H within practical systems and biological organisms. Herein, we synthesized a mitochondrial targetable fluorescent probe (ISQM) for fast NAD(P)H detection in <1 min. The ISQM is positively impacted because of the quinolinium reduction facilitated by NAD(P)H. It consequently liberates the push-pull fluorophore ISQM-H with a large Stokes shift (110 nm). This release leads to a turn-on response of red-emitting fluorescence, accompanied by a meager detection limit of 59 nM. To compare the differences in the NAD(P)H levels of tumor cells and normal cells, we used ISQM to measure the fluorescent signal intensities of HeLa cells (tumor cells) and RAW 264.7 cells (normal cells), respectively. Surprisingly, the experiment, including the measurement of colocalization over time, indicated that the probe exhibits a reaction with mitochondrial NAD(P)H and trace NAD(P)H in hypoxia conditions in cancer cells. Moreover, we effectively used the probe ISQM to identify the NAD(P)H in tumor mice.
Collapse
Affiliation(s)
- Kuppan Magesh
- Organic and Polymer Synthesis Laboratory, Department of chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Lu Yueh Hsun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shu Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
3
|
Sun Y, Mao Y, Bai T, Ye T, Lin Y, Wang F, Li L, Guo L, Liu H, Wang J. An activated near-infrared mitochondrion-targetable fluorescent probe for rapid detection of NADH. Chem Commun (Camb) 2024; 60:5932-5935. [PMID: 38757567 DOI: 10.1039/d4cc01378f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A novel NIR fluorescent probe based on quinoline-conjugated benzo[cd]indol dual-salt for NADH was developed. This probe swiftly detects and responds sensitively to both endogenous and exogenous NADH alterations, enabling imaging of NADH fluctuations in type II diabetic and AD model cells.
Collapse
Affiliation(s)
- Yaxin Sun
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanyun Mao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Tianwen Bai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Tianqing Ye
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yanfei Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Fang Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Jianbo Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
4
|
Debruyne A, Okkelman IA, Heymans N, Pinheiro C, Hendrix A, Nobis M, Borisov SM, Dmitriev RI. Live Microscopy of Multicellular Spheroids with the Multimodal Near-Infrared Nanoparticles Reveals Differences in Oxygenation Gradients. ACS NANO 2024; 18:12168-12186. [PMID: 38687976 PMCID: PMC11100290 DOI: 10.1021/acsnano.3c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.
Collapse
Affiliation(s)
- Angela
C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Irina A. Okkelman
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Nina Heymans
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Cláudio Pinheiro
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - An Hendrix
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Max Nobis
- Intravital
Imaging Expertise Center, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
He Y, Yang M, Cui J, Zhao C, Jiang B, Guan J, Zhou X, He M, Zhen Y, Zhang Y, Jing R, Wang Q, Qin Y, Wu L. Non-invasive diagnosis of bacterial and non-bacterial inflammations using a dual-enzyme-responsive fluorescent indicator. Chem Sci 2024; 15:5775-5785. [PMID: 38638235 PMCID: PMC11023053 DOI: 10.1039/d3sc06866h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Bacterial infections, as the second leading cause of global death, are commonly treated with antibiotics. However, the improper use of antibiotics contributes to the development of bacterial resistance. Therefore, the accurate differentiation between bacterial and non-bacterial inflammations is of utmost importance in the judicious administration of clinical antibiotics and the prevention of bacterial resistance. However, as of now, no fluorescent probes have yet been designed for the relevant assessments. To this end, the present study reports the development of a novel fluorescence probe (CyQ) that exhibits dual-enzyme responsiveness. The designed probe demonstrated excellent sensitivity in detecting NTR and NAD(P)H, which served as critical indicators for bacterial and non-bacterial inflammations. The utilization of CyQ enabled the efficient detection of NTR and NAD(P)H in distinct channels, exhibiting impressive detection limits of 0.26 μg mL-1 for NTR and 5.54 μM for NAD(P)H, respectively. Experimental trials conducted on living cells demonstrated CyQ's ability to differentiate the variations in NTR and NAD(P)H levels between A. baumannii, S. aureus, E. faecium, and P. aeruginosa-infected as well as LPS-stimulated HUVEC cells. Furthermore, in vivo zebrafish experiments demonstrated the efficacy of CyQ in accurately discerning variations in NTR and NAD(P)H levels resulting from bacterial infection or LPS stimulation, thereby facilitating non-invasive detection of both bacterial and non-bacterial inflammations. The outstanding discriminatory ability of CyQ between bacterial and non-bacterial inflammation positions it as a promising clinical diagnostic tool for acute inflammations.
Collapse
Affiliation(s)
- Yue He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Majun Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Jingyi Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University No. 20, Xisi Road Nantong 226001 Jiangsu China
| | - Can Zhao
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Bin Jiang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Jiayun Guan
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Xiaobo Zhou
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Miao He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Yaya Zhen
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Yuxue Zhang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University No. 20, Xisi Road Nantong 226001 Jiangsu China
| | - Qi Wang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
- School of Life Science, Nantong University Nantong 226001 China
| |
Collapse
|
6
|
Dwivedi SK, Arachchige DL, Waters M, Jaeger S, Mahmoud M, Olowolagba AM, Tucker DR, Geborkoff MR, Werner T, Luck RL, Godugu B, Liu H. Near-infrared Absorption and Emission Probes with Optimal Connection Bridges for Live Monitoring of NAD(P)H Dynamics in Living Systems. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 402:135073. [PMID: 38559378 PMCID: PMC10976508 DOI: 10.1016/j.snb.2023.135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two NAD(P)H-biosensing probes consisting of 1,3,3-trimethyl-3H-indolium and 3-quinolinium acceptors, linked by thiophene, A, and 3,4-ethylenedioxythiophene, B, bridges are detailed. We synthesized probes C and D, replacing the thiophene connection in probe A with phenyl and 2,1,3-benzothiadiazole units, respectively. Probe E was prepared by substituting probe A's 3-quinolinium unit with a 1-methylquinoxalin-1-ium unit. Solutions are non-fluorescent but in the presence of NADH, exhibit near-infrared fluorescence at 742.1 nm and 727.2 nm for probes A and B, respectively, and generate absorbance signals at 690.6 nm and 685.9 nm. In contrast, probes C and D displayed pronounced interference from NADH fluorescence at 450 nm, whereas probe E exhibited minimal fluorescence alterations in response to NAD(P)H. Pre-treatment of A549 cells with glucose in the presence of probe A led to a significant increase in fluorescence intensity. Additionally, subjecting probe A to lactate and pyruvate molecules resulted in opposite changes in NAD(P)H levels, with lactate causing a substantial increase in fluorescence intensity, conversely, pyruvate resulted in a sharp decrease. Treatment of A549 cells with varying concentrations of the drugs cisplatin, gemcitabine, and camptothecin (5, 10, and 20 μM) led to a concentration-dependent increase in intracellular fluorescence intensity, signifying a rise in NAD(P)H levels. Finally, fruit fly larvae were treated with different concentrations of NADH and cisplatin illustrating applicability to live organisms. The results demonstrated a direct correlation between fluorescence intensity and the concentration of NADH and cisplatin, respectively, further confirming the efficacy of probe A in sensing changes in NAD(P)H levels within a whole organism.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Micaela R Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
7
|
Arachchige DL, Dwivedi SK, Waters M, Jaeger S, Peters J, Tucker DR, Geborkoff M, Werner T, Luck RL, Godugu B, Liu H. Sensitive monitoring of NAD(P)H levels within cancer cells using mitochondria-targeted near-infrared cyanine dyes with optimized electron-withdrawing acceptors. J Mater Chem B 2024; 12:448-465. [PMID: 38063074 PMCID: PMC10918806 DOI: 10.1039/d3tb02124f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of near-infrared fluorescent probes, labeled A to E, were developed by combining electron-rich thiophene and 3,4-ethylenedioxythiophene bridges with 3-quinolinium and various electron deficient groups, enabling the sensing of NAD(P)H. Probes A and B exhibit absorptions and emissions in the near-infrared range, offering advantages such as minimal interference from autofluorescence, negligible photo impairment in cells and tissues, and exceptional tissue penetration. These probes show negligible fluorescence when NADH is not present, and their absorption maxima are at 438 nm and 470 nm, respectively. In contrast, probes C-E feature absorption maxima at 450, 334 and 581 nm, respectively. Added NADH triggers the transformation of the electron-deficient 3-quinolinium units into electron-rich 1,4-dihydroquinoline units resulting in fluorescence responses which were established at 748, 730, 575, 625 and 661 for probes AH-EH, respectively, at detection limits of 0.15 μM and 0.07 μM for probes A and B, respectively. Optimized geometries based on theoretical calculations reveal non-planar geometries for probes A-E due to twisting of the 3-quinolinium and benzothiazolium units bonded to the central thiophene group, which all attain planarity upon addition of hydride resulting in absorption and fluorescence in the near-IR region for probes AH and BH in contrast to probes CH-EH which depict fluorescence in the visible range. Probe A has been successfully employed to monitor NAD(P)H levels in glycolysis and specific mitochondrial targeting. Furthermore, it has been used to assess the influence of lactate and pyruvate on the levels of NAD(P)H, to explore how hypoxia in cancer cells can elevate levels of NAD(P)H, and to visualize changes in levels of NAD(P)H under hypoxic conditions with CoCl2 treatment. Additionally, probe A has facilitated the examination of the potential impact of chemotherapy drugs, namely gemcitabine, camptothecin, and cisplatin, on metabolic processes and energy generation within cancer cells by affecting NAD(P)H levels. Treatment of A549 cancer cells with these drugs has been shown to increase NAD(P)H levels, which may contribute to their anticancer effects ultimately leading to programmed cell death or apoptosis. Moreover, probe A has been successfully employed in monitoring NAD(P)H level changes in D. melanogaster larvae treated with cisplatin.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Joe Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Micaela Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
8
|
Yang M, Zhu W, Lv Y, Jiang B, Jiang C, Zhou X, Li G, Qin Y, Wang Q, Chen Z, Wu L. A dual-responsive ratiometric indicator designed for in vivo monitoring of oxidative stress and antioxidant capacity. Chem Sci 2023; 14:12961-12972. [PMID: 38023526 PMCID: PMC10664494 DOI: 10.1039/d3sc04081j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The imbalance between oxidative stress and antioxidant capacity is strongly associated with the development of numerous degenerative diseases, including cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Therefore, monitoring oxidative stress and antioxidant capacity in vivo is crucial for maintaining cellular homeostasis and the stability of the organism's internal environment. Here, we present the findings of our study on DQ1, a dual-responsive indicator designed specifically for imaging H2O2 and NAD(P)H, which are critical indicators of oxidative stress and antioxidant capacity. DQ1 facilitated the colorimetric and fluorescence detection of H2O2 and NAD(P)H in two well-separated channels, exhibiting a detection limit of 1.0 μM for H2O2 and 0.21 nM for NAD(P)H, respectively. Experiments conducted on living cells and zebrafish demonstrated that DQ1 could effectively detect changes in H2O2 and NAD(P)H levels when exposed to exogenous hypoxic conditions and chemical stimuli. Furthermore, the effectiveness of the as-fabricated indicator was investigated in two distinct mouse models: evaluating H2O2 and NAD(P)H levels in myocardial cell dysfunction during acute myocardial infarction and liver tissue damage under trichloroethylene stress conditions. In vivo experiments demonstrated that the levels of the two cardiac biomarkers increase progressively with the development of myocardial infarction, eventually reaching a steady state after 7 days when the damaged cells in the infarcted region become depleted. Moreover, during 14 continuous days of exposure to trichloroethylene, the two biomarkers in liver tissue exhibited a sustained increase, indicating a significant enhancement in intracellular oxidative stress and antioxidant capacity attributed to the mouse liver's robust metabolic capacity. The aforementioned studies underscore the efficacy of DQ1 as a valuable tool for scrutinizing redox states at both the single-cell and biological tissue levels. It presents significant potential for investigating the dynamic alternations in oxidative stress and antioxidant capacity within disease models as the disease progresses, thereby facilitating a more profound comprehension of these processes across various disease models.
Collapse
Affiliation(s)
- Majun Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Weida Zhu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Nantong University 20 Xisi Road 226001 Nantong China
| | - Yilin Lv
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Bin Jiang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Chenxia Jiang
- Department of Pathology, The Affiliated Hospital of Nantong University 20 Xisi Road 226001 Nantong P. R. China
| | - Xiaobo Zhou
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Guo Li
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Qi Wang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| | - Ziwei Chen
- Department of Cardiovascular Medicine, The Affiliated Hospital of Nantong University 20 Xisi Road 226001 Nantong China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University 9 Seyuan Road Nantong 226019 P. R. China
| |
Collapse
|
9
|
Barroso M, Monaghan MG, Niesner R, Dmitriev RI. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding. Adv Drug Deliv Rev 2023; 201:115081. [PMID: 37647987 PMCID: PMC10543546 DOI: 10.1016/j.addr.2023.115081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Organoid models have been used to address important questions in developmental and cancer biology, tissue repair, advanced modelling of disease and therapies, among other bioengineering applications. Such 3D microenvironmental models can investigate the regulation of cell metabolism, and provide key insights into the mechanisms at the basis of cell growth, differentiation, communication, interactions with the environment and cell death. Their accessibility and complexity, based on 3D spatial and temporal heterogeneity, make organoids suitable for the application of novel, dynamic imaging microscopy methods, such as fluorescence lifetime imaging microscopy (FLIM) and related decay time-assessing readouts. Several biomarkers and assays have been proposed to study cell metabolism by FLIM in various organoid models. Herein, we present an expert-opinion discussion on the principles of FLIM and PLIM, instrumentation and data collection and analysis protocols, and general and emerging biosensor-based approaches, to highlight the pioneering work being performed in this field.
Collapse
Affiliation(s)
- Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 02, Ireland
| | - Raluca Niesner
- Dynamic and Functional In Vivo Imaging, Freie Universität Berlin and Biophysical Analytics, German Rheumatism Research Center, Berlin, Germany
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Arachchige DL, Dwivedi SK, Jaeger S, Olowolagba AM, Mahmoud M, Tucker DR, Fritz DR, Werner T, Tanasova M, Luck RL, Liu H. Highly Sensitive Cyanine Dyes for Rapid Sensing of NAD(P)H in Mitochondria and First-Instar Larvae of Drosophila melanogaster. ACS APPLIED BIO MATERIALS 2023; 6:3199-3212. [PMID: 37556116 PMCID: PMC10584401 DOI: 10.1021/acsabm.3c00320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We have developed two highly sensitive cyanine dyes, which we refer to as probes A and B. These dyes are capable of quick and sensitive sensing of NAD(P)H. The dyes were fabricated by connecting benzothiazolium and 2,3-dimethylnaphtho[1,2-d]thiazol-3-ium units to 3-quinolinium through a vinyl bond. In the absence of NAD(P)H, both probes have low fluorescence and absorption peaks at 370 and 400 nm, correspondingly. This is because of their two electron-withdrawing acceptor systems with high charge densities. However, when NAD(P)H reduces the probes' electron-withdrawing 3-quinolinium units to electron-donating 1,4-dihydroquinoline units, the probes absorb at 533 and 535 nm and fluoresce at 572 and 586 nm for A and B correspondingly. This creates well-defined donor-π-acceptor cyanine dyes. We successfully used probe A to monitor NAD(P)H levels in live cells during glycolysis, under hypoxic conditions induced by CoCl2 treatment and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine. Probe A was also employed to visualize NAD(P)H in Drosophila melanogaster first-instar larvae. We observed an increase in NAD(P)H levels in A549 cancer cells both under hypoxic conditions and after treatment with cancer drugs, including cisplatin, camptothecin, and gemcitabine.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Chemistry, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Delaney Raine Fritz
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, and Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
11
|
Dwivedi SK, Arachchige DL, Olowolagba A, Mahmoud M, Cunnien J, Tucker DR, Fritz D, Werner T, Luck RL, Liu H. Thiophene-based organic dye with large Stokes shift and deep red emission for live cell NAD(P)H detection under varying chemical stimuli. J Mater Chem B 2023; 11:6296-6307. [PMID: 37249441 PMCID: PMC10524713 DOI: 10.1039/d3tb00645j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a novel method for synthesizing red and deep red cyanine dyes with large Stokes shifts, probes A and B, for live cell NAD(P)H detection. The probes were prepared using thiophene-based organic dyes featuring a π-conjugated bridge of thiophene and 3,4-ethylenedioxythiophene units linking the 1-methylquinolinium acceptor and formyl acceptor, respectively. These probes display weak absorption peaks at 315 nm (A) and 334 nm (B) and negligible fluorescence in the absence of NADH. However, upon the presence of NADH, new absorption and fluorescence peaks appear at 477 nm and 619 nm for probe A and at 486 nm and 576 nm for probe B, respectively. This is due to the NADH-facilitated reduction of the 1-methylquinolinium unit into 1-methyl-1,4-dihydroquinoline, which then acts as the electron donor for the probes, leading to the formation of well-defined electron donor-acceptor dye systems. Probe A has a large Stokes shift of 144 nm, which allows for better separation between the excitation and emission spectra, reducing spectral overlap and improving the accuracy of fluorescence measurements. The probes are highly selective for NAD(P)H, water-soluble, biocompatible, and easily permeable to cells. They are also photostable and were successfully used to monitor changes in NADH concentration in live cells during glycolysis in the presence of glucose, lactate, and pyruvate, treatment of FCCP and cancer drug cisplatin, and under hypoxia triggered by CoCl2. Furthermore, the probes were able to image NAD(P)H in Drosophila melanogaster larvae. Notably, cisplatin treatment increased the NAD(P)H concentration in A459 cells over time. Overall, this work presents a significant advancement in the field of live cell imaging by providing a simple and cost-effective method for detecting changes in NAD(P)H concentration under varying chemical stimuli.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Adenike Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Jenna Cunnien
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Delaney Fritz
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
12
|
Peng Z, Wang R, Xia X, Zhang J. Engineered acetaldehyde dehydrogenase for the efficient degradation of acetaldehyde. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117258. [PMID: 36669314 DOI: 10.1016/j.jenvman.2023.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Acetaldehyde is highly cytotoxic and widely presents in food and the environment. Aldehyde dehydrogenase (ALDH) can degrade acetaldehyde to non-toxic acetic acid, showing potential for acetaldehyde elimination. However, a lack of high-throughput methods for screening efficient variants is a significant obstacle to ALDH design. Here, we established a visualized high-throughput method to screen recombinantly expressed ALDH variants in Bacillus subtilis by fluorescent probes of dual-acceptor cyanine-based in response to NADH, the acetaldehyde degradation product. Molecular docking revealed key amino acids in the binding region of acetaldehyde to ALDH. Combined with saturation mutagenesis and visualization high-throughput methods, a variant ALDHS273N with an activity of 119.82 U·mL-1 was screened. The optimal reaction temperature and pH of ALDHS273N were 60 °C and 9.0, respectively. ALDHS273N showed stability at 30-50 °C and pH 5.0-9.0. The activity of ALDHS273N was increased to 263.52 U∙mL-1 by fermentation optimization, which was 5.58 times that of ALDHWT. The degradation rate of ALDHS273N to 100 mmol L-1 acetaldehyde was 87.34% within 2 h, which was 4.2 times that of the wild enzyme (20.81%). As far as we know, this is the ALDH with the highest activity reported so far, and it is also the first time that ALDH has been used for the efficient degradation of acetaldehyde. Overall, the reported high-throughput screening method and developed mutants represent a significant advance in green bio-elimination technologies of acetaldehyde.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ran Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiaofeng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
13
|
Chang H, Hu X, Tang X, Tian S, Li Y, Lv X, Shang L. A Mitochondria-Targeted Fluorescent Probe for Monitoring NADPH Overproduction during Influenza Virus Infection. ACS Sens 2023; 8:829-838. [PMID: 36689687 DOI: 10.1021/acssensors.2c02458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor in the progress of antioxidant synthesis and biosynthesis, and an abnormal NADPH level has been observed in many viral infection processes. However, efficient tools to monitor NADPH in living cells after viral infection have not been reported. In this work, we present a fluorescent probe, NAFP4, that could detect NADPH ex vivo with a low detection limit of 3.66 nM and image mitochondrial NADPH level changes in living cells. The probe exhibits excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. Using NAFP4, we reveal that the NADPH is overproduced in the host cells infected by influenza virus, which was caused by an elevated level of G6PDH during the virus infection. Moreover, there was positive association between the G6PDH level and virus replication. With the proposed probe NAFP4, our study highlights that the virus infection would influence the host metabolism in NADPH production and also suggests that G6PDH is expected to be a promising target for antiviral therapy.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiaomei Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Shiwei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yidan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xing Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| |
Collapse
|
14
|
Duan DC, Liu J, Zheng YL, Chen H, Zhang X, Zhang Y, Dai F, Zhang S, Zhou B. Cellular and Intravital Imaging of NAD(P)H by a Red-Emitting Quinolinium-Based Fluorescent Probe that Features a Shift of Its Product from Mitochondria to the Nucleus. Anal Chem 2023; 95:1335-1342. [PMID: 36573639 DOI: 10.1021/acs.analchem.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
NAD(P)H is a vital hydrogen donor and electron carrier involved in numerous biological processes. The development of small-molecule tools for intravital imaging of NAD(P)H is significant for further exploring their pathophysiological roles. Herein, we rationally designed a fluorescent probe NADH-R by a simple graft of pyridiniumylbutenenitrile on a 1-methylquinolinium moiety in the 3-position. Benefited from the reduction of quinolinium by NAD(P)H, this probe releases the free push-pull fluorophore NADH-RH, allowing a turn-on red-emitting fluorescence response together with an ultralow detection limit of 12 nM. Under the assistance of the probe, we first monitored exogenous and endogenous generation of NAD(P)H in living cells, subsequently observed dynamic changes of NAD(P)H levels in living cells under different metabolic perturbations, and finally visualized the declined NAD(P)H levels in live mouse brain in a stroke model. Unexpectedly, the time-dependent colocalization experiment revealed that the probe reacts with mitochondrial NAD(P)H, followed by a shift of its reduced product NADH-RH from mitochondria to the nucleus, highlighting that NADH-RH is a novel nucleus-directed dye scaffold, which would facilitate the development of nucleus-targeting fluorescent probes and drugs.
Collapse
Affiliation(s)
- De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Junru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Xinying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Yu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| |
Collapse
|
15
|
Yao L, Yin C, Huo F. Small-Molecule Fluorescent Probes for Detecting Several Abnormally Expressed Substances in Tumors. MICROMACHINES 2022; 13:1328. [PMID: 36014250 PMCID: PMC9412406 DOI: 10.3390/mi13081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Malignant tumors have always been the biggest problem facing human survival, and a huge number of people die from cancer every year. Therefore, the identification and detection of malignant tumors have far-reaching significance for human survival and development. Some substances are abnormally expressed in tumors, such as cyclooxygenase-2 (COX-2), nitroreductase (NTR), pH, biothiols (GSH, Cys, Hcy), hydrogen sulfide (H2S), hydrogen sulfide (H2O2), hypochlorous acid (HOCl) and NADH. Consequently, it is of great value to diagnose and treat malignant tumors due to the identification and detection of these substances. Compared with traditional tumor detection methods, fluorescence imaging technology has the advantages of an inexpensive cost, fast detection and high sensitivity. Herein, we mainly introduce the research progress of fluorescent probes for identifying and detecting abnormally expressed substances in several tumors.
Collapse
Affiliation(s)
- Leilei Yao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
16
|
Zhang Y, Liyana Arachchige D, Olowolagba A, Luck RL, Liu H. Near-infrared Fluorescent Probe Based on Rhodamine Derivative for Detection of NADH in Live Cells. Methods 2022; 204:22-28. [PMID: 35381337 PMCID: PMC9233151 DOI: 10.1016/j.ymeth.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
A near-infrared fluorescent probe was prepared for selective detection of reduced nicotinamide adenine dinucleotide (NADH) in live cells. The probe turns off the fluorescence with a closed spironolactone switch. However, reduction of the probe by NADH turns on fluorescence at 740 nm. Theoretical calculations suggest a more planar arrangement between the rhodamine and quinoline moieties with increased π-delocalization resulting from reduction.
Collapse
|
17
|
Wang X, Zhao Y, Hua Q, Lu J, Tang F, Sun W, Luan F, Zhuang X, Tian C. An ultrasensitive electrochemiluminescence biosensor for the detection of total bacterial count in environmental and biological samples based on a novel sulfur quantum dot luminophore. Analyst 2022; 147:1716-1721. [DOI: 10.1039/d2an00153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemiluminescence sensor for total bacterial count detection based on sulfur quantum dots with β-nicotinamide adenine dinucleotide as an important parameter.
Collapse
Affiliation(s)
- Xiaobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yuqing Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Qing Hua
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiaojiao Lu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feiyan Tang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenjie Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
18
|
Abstract
Heamatang (HMT) is a classic medicinal formula used in traditional Chinese and Korean medicine; it contains seven distinct components, mainly of herbal origin. HMT is used as an antiaging remedy, treating urinary disorders and increasing energy and vitality. However, the therapeutic applications of this formula have not been evaluated with evidence-based science. Therefore, we assessed HMT through various in vitro methods, including cell viability assay, fluorescence-activated cell sorting assay (FACS), Western blotting, migration assay, three-dimensional (3D) cell culture, siRNA-mediated PAK-1 knockdown, and crystal violet assays. HMT decreased PAK-1 expression in PC-3 cells and inhibited cell viability, growth, and motility. The inhibition of cell motility by HMT was correlated with PAK-1-mediated inhibition of Lim domain kinase (LIMK) and cofilin. HMT induced G1 arrest and apoptosis through the transcriptional regulation of cell cycle regulatory proteins and apoptosis-related proteins (increase in c-cas3 and inhibition of PARP and BCL-2). Moreover, HMT suppressed PAK-1 expression, leading to the inhibition of AKT activities. Finally, we showed that decursin was the active ingredient involved in the inhibitory effect of HMT on PAK-1. Our findings demonstrated that HMT exerts its anticancer influence through the inhibition of PAK-1. The HMT formula could be applied in various fields, including functional health food and pharmaceutical development.
Collapse
|
19
|
Zhang J, Liu Z, Tian F, Chen Y. A novel ratiometric fluorescent probe from a hemicyanine derivative for detecting NAD(P)H in a cell microenvironment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1681-1686. [PMID: 33861234 DOI: 10.1039/d1ay00002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a fluorescent compound derived from coumarin and hemicyanine was synthesized and characterized. Herein, we present the fluorescence properties of the probe. Fluorescence selectivity experiments revealed that it exhibited higher ratiometric fluorescence response activity toward NAD(P)H than other commonly coexisting compounds in the cell microenvironment, in accord with the fluorescence shift from red to blue. In addition, the fluorescence identification mechanism was deduced to be a redox reaction between the sensor and NAD(P)H according to the fluorescence behavior. The ratiometric fluorescent probe provided an important theoretical basis for sensing NAD(P)H in vitro and in vivo. We also used this phenomenon to build a sensitive detection platform of NAD(P)H-dependent enzyme activity based on the fluorescence method.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry, Zhengzhou University, Zhoukou 466001, P. R. China
| | | | | | | |
Collapse
|
20
|
Tian Y, Jiang WL, Wang WX, Mao GJ, Li Y, Li CY. NAD(P)H-triggered probe for dual-modal imaging during energy metabolism and novel strategy of enhanced photothermal therapy in tumor. Biomaterials 2021; 271:120736. [PMID: 33662745 DOI: 10.1016/j.biomaterials.2021.120736] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
The reduced coenzymes (NADH and NADPH) are an important product in energy metabolism and closely related to the occurrence and development of cancer. So it is necessary to use a powerful detection tool to visualize NAD(P)H in energy metabolism of tumor cells and find a new strategy to improve cancer treatment based on NAD(P)H. Herein, a novel multifunctional probe (Cy-N) is synthesized with good near-infrared fluorescence (NIRF) response to NAD(P)H and the photoacoustic (PA) and photothermal properties are successfully activated by NAD(P)H. The probe is successfully applied in visualizing NAD(P)H in energy metabolism of tumor cells and imaging NAD(P)H in bacteria. Moreover, the probe can be used to image NAD(P)H in energy metabolism of tumor-bearing mice by dual-modal imaging (NIRF and PA). More importantly, in terms of the role of NAD(P)H in energy metabolism, the photothermal therapy (PTT) is activated by NAD(P)H and a novel strategy of enhanced PTT is proposed by injecting glucose. As far as we know, this is the first probe to detect NAD(P)H in energy metabolism through dual-modal imaging, and also the first probe to activate PTT based on NAD(P)H, which will provide important information of the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yang Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
21
|
Recent advances in fluorescent probes for cellular antioxidants: Detection of NADH, hNQO1, H2S, and other redox biomolecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Sun P, Zhang H, Sun Y, Liu J. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118919. [PMID: 32977107 DOI: 10.1016/j.saa.2020.118919] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) participate in numerous metabolic processes in living cells as electron carriers. The levels of NADH and NADPH in a cell are closely related to its metabolic and pathological state. It is important to monitor the levels of NADH and NADPH in living cells and in vivo in real-time. This review mainly focuses on fluorescent probes developed for monitoring NADH and NADPH in living cells and in vivo, and classifies them according to the recognition units. These fluorescence probes can rapidly respond to changes in NADH and NADPH levels without interference from other biomolecules, both in cell culture and in vivo. These probes have been employed to monitor NADH and NADPH levels in living cells, tumor spheroids, and in vivo; moreover, some of them can be used to discriminate normal cells from cancer cells, and detect cancer cell death due to reductive stress induced by natural antioxidants. This review is expected to inspire the generation of novel fluorescent probes for the detection of NADH and NADPH, and stimulate more attention in the development of fluorescent probes based on carbon dots and nanoparticles, as well as metal complex-based, time-gated luminescent probes for monitoring NADH and NADPH in both living cells and in vivo.
Collapse
Affiliation(s)
- Pengjuan Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
23
|
Yu X, Xiang L, Yang S, Qu S, Zeng X, Zhou Y, Yang R. A near-infrared fluorogenic probe with fast response for detecting sodium dithionite in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118887. [PMID: 32927301 DOI: 10.1016/j.saa.2020.118887] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Developing a reliable fluorescence probe is crucial for accurately monitoring sodium dithionite (Na2S2O4, SDT) in biosystems, but the current reported azo-based ones suffers from short excitation/emission wavelengths and relative slow response speed. To address this issue, we herein present a novel near-infrared emissive fluorescence probe for SDT, namely DCM-MQ, consisting of a dicyanomethylene-benzopyran fluorogenic reporter and a 1-methylquinolinium as recognition moiety. On the basis of the specific reduction mechanism, DCM-MQ exhibited a rapid colorimetric and fluorescent recognition for SDT (less than 3 s) with large Stokes shift (112 nm) and high sensitivity (detection limit was 19 nM). The fluorescence imaging results demonstrate that DCM-MQ is competent for monitoring SDT in living systems.
Collapse
Affiliation(s)
- Xizi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lie Xiang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xianqing Zeng
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
24
|
Podder A, Murali VP, Deepika S, Dhamija A, Biswas S, Maiti KK, Bhuniya S. NADH-Activated Dual-Channel Fluorescent Probes for Multicolor Labeling of Live Cells and Tumor Mimic Spheroids. Anal Chem 2020; 92:12356-12362. [PMID: 32814423 DOI: 10.1021/acs.analchem.0c02049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 1,4-dihydronicotinamide adenine dinucleotide (NADH) is one of the key coenzymes that participates in various metabolic processes including maintaining the redox balance. Early information on the imbalance of NADH is crucial in the context of diagnosing the pathogenic conditions. Thus, a dual-channel fluorescent probe (MQN) is developed for tracking of NADH/NAD(P)H in live cells. In the presence of NADH, only it showed emission signals at 460 and 550 nm upon excitation at 390 and 450 nm, respectively. The probe could provide accurate information on NADH levels in cancer cells (HeLa) and normal cells (WI-38). We observed that the NADH level in cancer cells (HeLa) is relatively higher than that in normal WI-38 cells. We received similar information on NADH upon calibrating with a commercial NADH kit. Moreover, we evaluated substrate-specific NADH expression in the glycolysis pathway and oxidative phosphorylation process. Also, the dual-channel probe MQN has visualized NADH manipulation in the course of depletion of GSH to maintain cellular redox balance. This dual-channel molecular probe MQN comes out as a new detection tool for NADH levels in live cells and tumor mimic spheroids.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.,Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Vishnu Priya Murali
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Selvakumar Deepika
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | | | - Shayeri Biswas
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Kaustabh K Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.,Department of Chemical Engineering & Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| |
Collapse
|
25
|
Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Li H, Li Y, Cheng H, Yang Q, Xiong J, Ma Y, Ding L, Zeng C. Lanthanide Metal-Organic Frameworks as Luminescent Sensor for Toluene. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Garzón LM, Portilla J. Synthesis of Novel D-π-A Dyes for Colorimetric Cyanide Sensing Based on Hemicyanine-Functionalized N
-(2-Pyridyl)pyrazoles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Luz-Mery Garzón
- Departamento de Química; Universidad de los Andes; Carrera 1 N° 18A-12 Bogotá Colombia
| | - Jaime Portilla
- Departamento de Química; Universidad de los Andes; Carrera 1 N° 18A-12 Bogotá Colombia
| |
Collapse
|
28
|
Li W, Gong X, Fan X, Yin S, Su D, Zhang X, Yuan L. Recent advances in molecular fluorescent probes for organic phosphate biomolecules recognition. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Pan X, Zhao Y, Cheng T, Zheng A, Ge A, Zang L, Xu K, Tang B. Monitoring NAD(P)H by an ultrasensitive fluorescent probe to reveal reductive stress induced by natural antioxidants in HepG2 cells under hypoxia. Chem Sci 2019; 10:8179-8186. [PMID: 31857884 PMCID: PMC6836941 DOI: 10.1039/c9sc02020a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022] Open
Abstract
An ultrasensitive fluorescent probe for monitoring NAD(P)H and revealing reductive stress induced by natural antioxidants in HepG2 cells under hypoxia.
Reductive stress, the opposite of oxidative stress, represents a disorder in the redox balance state which is harmful to biological systems. For decades, the role of oxidative stress in tumor therapy has been the focus of attention, while the effects of reductive stress have been rarely studied. Here, we report the anti-cancer effects of reductive stress induced by three natural antioxidants (resveratrol, curcumin and celastrol). Considering the fact that the solid tumor microenvironment suffers from hypoxia, we performed cell experiments under hypoxic conditions. In order to observe the reductive stress, we first developed an ultrasensitive fluorescent probe (TCF-MQ) for specifically imaging NAD(P)H which is a marker of reductive stress. TCF-MQ responded to NAD(P)H rapidly and exhibited high sensitivity with a detection limit of 6 nM. With the help of TCF-MQ, we found that upon the treatment of HepG2 cells with pharmacological doses of three natural antioxidants under hypoxic conditions, high levels of NAD(P)H were produced before cell death. The excess NAD(P)H resulted in reductive stress instead of oxidative stress. In contrast, under normoxic conditions, there was no reductive stress involved in the process of cell death induced by three natural antioxidants. Therefore, we hypothesize that the mechanism of cancer cell death induced by natural antioxidants under hypoxia should be attributed to the reductive stress.
Collapse
Affiliation(s)
- Xiaohong Pan
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ; .,Department of Pharmaceutical Sciences , Binzhou Medical University , Yantai 264003 , P. R. China
| | - Yuehui Zhao
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Tingting Cheng
- Department of Pharmaceutical Sciences , Binzhou Medical University , Yantai 264003 , P. R. China
| | - Aishan Zheng
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Anbin Ge
- Department of Pharmaceutical Sciences , Binzhou Medical University , Yantai 264003 , P. R. China
| | - Lixin Zang
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
30
|
Podder A, Koo S, Lee J, Mun S, Khatun S, Kang HG, Bhuniya S, Kim JS. A rhodamine based fluorescent probe validates substrate and cellular hypoxia specific NADH expression. Chem Commun (Camb) 2019; 55:537-540. [DOI: 10.1039/c8cc08991d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel rhodamine-based redox probe (MQR) was developed to visualize the alteration of the NADH level under diverse metabolic perturbations.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Seyoung Koo
- Department of Chemistry
- Korea University
- Seoul 02841
- Korea
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science
- College of Health Sciences
- Eulji University
- Seongnam 13135
- Korea
| | - Sora Mun
- Department of Senior Healthcare
- BK21 Plus Program
- Graduate School
- Eulji University
- Seongnam 13135
| | - Sabina Khatun
- Department of Chemical Engineering & Materials Science
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science
- College of Health Sciences
- Eulji University
- Seongnam 13135
- Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | | |
Collapse
|
31
|
Zhao Y, Wei K, Kong F, Gao X, Xu K, Tang B. Dicyanoisophorone-Based Near-Infrared-Emission Fluorescent Probe for Detecting NAD(P)H in Living Cells and in Vivo. Anal Chem 2018; 91:1368-1374. [PMID: 30525465 DOI: 10.1021/acs.analchem.8b03563] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NADH and NADPH are ubiquitous coenzymes in all living cells that play vital roles in numerous redox reactions in cellular energy metabolism. To accurately detect the distribution and dynamic changes of NAD(P)H under physiological conditions is essential for understanding their biological functions and pathological roles. In this work, we developed a near-infrared (NIR)-emission fluorescent small-molecule probe (DCI-MQ) composed of a dicyanoisophorone chromophore conjugated to a quinolinium moiety for in vivo NAD(P)H detection. DCI-MQ has the advantages of high water solubility, a rapid response, extraordinary selectivity, great sensitivity (a detection limit of 12 nM), low cytotoxicity, and NIR emission (660 nm) in response to NAD(P)H. Moreover, the probe DCI-MQ was successfully applied for the detection and imaging of endogenous NAD(P)H in both living cells and tumor-bearing mice, which provides an effective tool for the study of NAD(P)H-related physiological and pathological processes.
Collapse
Affiliation(s)
- Yuehui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Keyan Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , PR China
| |
Collapse
|
32
|
Santra M, Sarkar S, Jun YW, Reo YJ, Ahn KH. Dual probing of redox species, NAD(P)H and HOCl, with a benzo[ a ]phenoxazine based far red-emitting dye. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X, Balakirev MY. High-Content Monitoring of Drug Effects in a 3D Spheroid Model. Front Oncol 2017; 7:293. [PMID: 29322028 PMCID: PMC5732143 DOI: 10.3389/fonc.2017.00293] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
A recent decline in the discovery of novel medications challenges the widespread use of 2D monolayer cell assays in the drug discovery process. As a result, the need for more appropriate cellular models of human physiology and disease has renewed the interest in spheroid 3D culture as a pertinent model for drug screening. However, despite technological progress that has significantly simplified spheroid production and analysis, the seeming complexity of the 3D approach has delayed its adoption in many laboratories. The present report demonstrates that the use of a spheroid model may be straightforward and can provide information that is not directly available with a standard 2D approach. We describe a cost-efficient method that allows for the production of an array of uniform spheroids, their staining with vital dyes, real-time monitoring of drug effects, and an ATP-endpoint assay, all in the same 96-well U-bottom plate. To demonstrate the method performance, we analyzed the effect of the preclinical anticancer drug MLN4924 on spheroids formed by VCaP and LNCaP prostate cancer cells. The drug has different outcomes in these cell lines, varying from cell cycle arrest and protective dormancy to senescence and apoptosis. We demonstrate that by using high-content analysis of spheroid arrays, the effect of the drug can be described as a series of EC50 values that clearly dissect the cytostatic and cytotoxic drug actions. The method was further evaluated using four standard cancer chemotherapeutics with different mechanisms of action, and the effect of each drug is described as a unique multi-EC50 diagram. Once fully validated in a wider range of conditions, this method could be particularly valuable for phenotype-based drug discovery.
Collapse
Affiliation(s)
| | - Patricia Obeïd
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | - Anastasia V. Rulina
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
- Université Lyon 1, ENS de Lyon, INSERM, CNRS, CIRI, Lyon, France
| | - Vincent Haguet
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | - Xavier Gidrol
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | | |
Collapse
|
34
|
Wang L, Zhang J, Kim B, Peng J, Berry SN, Ni Y, Su D, Lee J, Yuan L, Chang YT. Boronic Acid: A Bio-Inspired Strategy To Increase the Sensitivity and Selectivity of Fluorescent NADH Probe. J Am Chem Soc 2016; 138:10394-7. [PMID: 27500425 DOI: 10.1021/jacs.6b05810] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent probes have emerged as an essential tool in the molecular recognition events in biological systems; however, due to the complex structures of certain biomolecules, it remains a challenge to design small-molecule fluorescent probes with high sensitivity and selectivity. Inspired by the enzyme-catalyzed reaction between biomolecule and probe, we present a novel combination-reaction two-step sensing strategy to improve sensitivity and selectivity. Based on this strategy, we successfully prepared a turn-on fluorescent reduced nicotinamide adenine dinucleotide (NADH) probe, in which boronic acid was introduced to bind with NADH and subsequently accelerate the sensing process. This probe shows remarkably improved sensitivity (detection limit: 0.084 μM) and selectivity to NADH in the absence of any enzymes. In order to improve the practicality, the boronic acid was further modified to change the measurement conditions from alkalescent (pH 9.5) to physiological environment (pH 7.4). Utilizing these probes, we not only accurately quantified the NADH weight in a health care product but also evaluated intracellular NADH levels in live cell imaging. Thus, these bio-inspired fluorescent probes offer excellent tools for elucidating the roles of NADH in biological systems as well as a practical strategy to develop future sensitive and selective probes for complicated biomolecules.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemistry and Medicinal Chemistry Program, National University of Singapore , Singapore 117543
| | - Jingye Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , Shanghai 201203, P. R. China
| | - Beomsue Kim
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium , Singapore 117543
| | - Juanjuan Peng
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium , Singapore 117543
| | - Stuart N Berry
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium , Singapore 117543
| | - Yong Ni
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium , Singapore 117543
| | - Dongdong Su
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium , Singapore 117543
| | - Jungyeol Lee
- Department of Chemistry and Medicinal Chemistry Program, National University of Singapore , Singapore 117543
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Program, National University of Singapore , Singapore 117543.,Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium , Singapore 117543
| |
Collapse
|
35
|
The Ca2+/Mn2+-transporting SPCA2 pump is regulated by oxygen and cell density in colon cancer cells. Biochem J 2016; 473:2507-18. [PMID: 27316461 DOI: 10.1042/bcj20160477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022]
Abstract
The mammalian SPCA1 and SPCA2 ATPases localize in membranes of the secretory pathway and transport ions of Ca(2+) and Mn(2+) The role of tissue-specific SPCA2 isoform, highly expressed in lungs, mammary gland and gastrointestinal tract, is poorly understood. To elucidate the function of SPCA2, we studied human colon cancer HCT116 cells, grown under ambient and decreased O2 levels. We found that in contrast with other Ca(2+)-ATPase isoforms the expression of SPCA2 was up-regulated under hypoxia (3% O2), in both adherent (2D) and spheroid (3D) cultures. In spheroids, experiencing lowest O2 levels (30-50 μM, measured by phosphorescence lifetime imaging microscopy), we observed lower staining with reactive oxygen species (ROS)-specific fluorescent probe, which correlated with increased SPCA2. However, SPCA2 expression was up-regulated in cells exposed to reactive oxygen and nitrogen species donors, and when grown at higher density. We noticed that the culture exposed to hypoxia showed overall increase in S phase-positive cells and hypothesized that SPCA2 up-regulation under hypoxia can be linked to Mn(2+)-dependent cell cycle arrest. Consequently, we found that SPCA2-transfected cells display a higher number of cells entering S phase. Altogether, our results point at the important role of SPCA2 in regulation of cell cycle in cancer cells.
Collapse
|