1
|
Kösoğlu CB, Dede S, Karakuş E, Erdoğmuş A, Keskin B, Önal H. A novel graphene oxide-based fluorescence method for detection of urine glycosaminoglycans. Biotechnol Appl Biochem 2024; 71:651-660. [PMID: 38449083 DOI: 10.1002/bab.2565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024]
Abstract
Glycosaminoglycans (GAGs) serve as a biomarker for mucopolysaccharidoses disease. In this study, a novel fluorometric method was developed to measure total GAGs in urine. Graphene oxide (GO) and rhodamine B (RhB), a cationic fluorescent dye, were employed in the development of the method. RhB attaches to the GO surface via electrostatic attraction, leading to the quenching of its fluorescence upon the establishment of the RhB-GO complex. However, the presence of GAGs prompts a resurgence of intense fluorescence. The linear range of the method is between 5.00 and 70.00 mg/L. The total GAG levels of urine samples analyzed using the method agree with the results of the biochemistry analysis laboratory (65.85 and 79.18 mg/L; 73.30 ± 1.76 and 72.21 ± 2.21). The method is simple, accurate, and sensitive and may be used for both first-step diagnosis of the mucopolysaccharidoses and detection of individual GAGs for studies of GAG-related research and other biological applications.
Collapse
Affiliation(s)
- Ceren Bakır Kösoğlu
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey
| | - Süreyya Dede
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey
| | - Emine Karakuş
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey
| | - Bahadır Keskin
- Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey
| | - Hasan Önal
- Pediatric Endocrinology and Metabolic Diseases Clinic, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir Istanbul, Turkey
| |
Collapse
|
2
|
Santhoshkumar S, Madhu M, Tseng WB, Tseng WL. Gold nanocluster-based fluorescent sensors for in vitro and in vivo ratiometric imaging of biomolecules. Phys Chem Chem Phys 2023; 25:21787-21801. [PMID: 37577965 DOI: 10.1039/d3cp02714g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gold nanoclusters (AuNCs) are promising nanomaterials for ratiometric fluorescent probes due to their tunable fluorescence wavelengths dependent on size and structure, as well as their biocompatibility and resistance to photobleaching. By incorporating an additional fluorescence spectral peak, dual-emission AuNC-based fluorescent probes have been developed to enhance the signal output reproducibility. These probes can be fabricated by integrating various luminescent nanomaterials with AuNCs. This review focuses on the preparation methods and applications of ratiometric fluorescent probes derived from AuNCs and other fluorescent nanomaterials or fluorescent dyes for both in vitro and in vivo bioimaging of target analytes. Additionally, the review delves into the sensing mechanisms of AuNC-based ratiometric probes, their synthetic strategies, and the challenges encountered when using AuNCs for ratiometric bioimaging. Moreover, we explore the application of protein-stabilized AuNCs and thiolate-capped AuNC-based ratiometric fluorescent probes for biosensing and bioimaging. Two primary methods for assembling AuNCs and fluorophores into ratiometric fluorescent probes are discussed: triggered assembly and self-assembly. Finally, we address the challenges and issues associated with ratiometric bioimaging using AuNCs and propose future directions for further advancing AuNCs as ratiometric imaging agents.
Collapse
Affiliation(s)
- S Santhoshkumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Department of Environmental Engineering, Da-Yeh University, No. 168, University Rd., Dacun, Changhua 515006, Taiwan.
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Tseng WB, Chou YS, Lu CZ, Madhu M, Lu CY, Tseng WL. Fluorescence sensing of heparin and heparin-like glycosaminoglycans by stabilizing intramolecular charge transfer state of dansyl acid-labeled AG73 peptides with glutathione-capped gold nanoclusters. Biosens Bioelectron 2021; 193:113522. [PMID: 34315066 DOI: 10.1016/j.bios.2021.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022]
Abstract
Sensors that can specifically and accurately detect glycosaminoglycans are rare. Here, a dual-mode platform for fluorescence intensity and lifetime sensing of plasma heparin and fluorescence imaging of heparan sulfate proteoglycan-expressed cancer cells was developed by stabilizing the intramolecular charge transfer (ICT) state of dansyl acid-labeling AG73 (DA-AG73) peptide with glutathione-capped gold nanoclusters (GSH-AuNCs). DA-AG73 peptides, including an electron-donor dimethylamino group and an electron-withdrawing sulfonamide moiety in the labeled DA molecules, emitted weak fluorescence due to the formation of the twisted ICT excited state. The complexation of heparin with DA-AG73 peptides followed by interacting with the GSH-AuNCs could restrict the rotation of the dimethylamino groups of the labeled DA molecules, triggering the transition from their twisted ICT state to ICT excited state. As a result, the fluorescence intensity and lifetime of the labeled DA molecules in DA-AG73 peptides were gradually enhanced with increasing the heparin concentration. The proposed platform provided excellent selectivity toward heparin and heparan sulfate and exhibited two linear calibration curves for quantifying 20-800 nM and 20-1000 nM heparin in the fluorescence intensity and lifetime modes, respectively. The proposed platform was practically applied for the fluorescence intensity and lifetime determination of plasma heparin and for the selective imaging of heparan sulfate proteoglycan-expressed cells.
Collapse
Affiliation(s)
- Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Yi-Shiuan Chou
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Cheng-Zong Lu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan; School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
4
|
Dolai J, Ali H, Jana NR. Selective capturing and fluorescence “turn on” detection of dibutyl phthalate using a molecular imprinted nanocomposite. NEW J CHEM 2021. [DOI: 10.1039/d1nj04169j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence-based selective detection of dibutyl phthalate is achieved via a paper-strip-based approach.
Collapse
Affiliation(s)
- Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Haydar Ali
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
5
|
Glycosaminoglycans in biological samples – Towards identification of novel biomarkers. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Ourri B, Vial L. Lost in (Clinical) Translation: Recent Advances in Heparin Neutralization and Monitoring. ACS Chem Biol 2019; 14:2512-2526. [PMID: 31682398 DOI: 10.1021/acschembio.9b00772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The heparin family, which includes unfractionated heparin, low-molecular heparin, and fondaparinux, is a class of drugs clinically used as intravenous blood thinners. To date, issues related to both the reversal of anticoagulation and the blood level determination of the anticoagulant at the point-of-care remain: while the only U.S. Food and Drug Administration (FDA) approved antidote for heparin displays serious efficacy and safety drawbacks, the current assays for heparin monitoring are indirect measurements subject to their own limitations and variations. Herein, we provide an update on the numerous recent chemical approaches to tackle these issues, from which it is clear that some new antidotes and sensors for heparin certainly have the potential to exceed current clinical standards. This review aims to review a field that requires close collaborations between physicians, biologists, and chemists in order to foster advances toward clinical translation.
Collapse
Affiliation(s)
- Benjamin Ourri
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Laurent Vial
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
7
|
Zhang X, Liu S, Song X, Wang H, Wang J, Wang Y, Huang J, Yu J. Robust and Universal SERS Sensing Platform for Multiplexed Detection of Alzheimer's Disease Core Biomarkers Using PAapt-AuNPs Conjugates. ACS Sens 2019; 4:2140-2149. [PMID: 31353891 DOI: 10.1021/acssensors.9b00974] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiplexed detection of Alzheimer's disease (AD) core biomarkers is of great significance to early diagnosis and personalized treatment of AD patients. Herein, we construct a robust and convenient surface-enhanced Raman scattering (SERS) biosensing platform for simultaneous detection of Aβ(1-42) oligomers and Tau protein using different Raman dye-coded polyA aptamer-AuNPs (PAapt-AuNPs) conjugates. This strategy relies on the specific protein-aptamer binding-mediated aggregation of AuNPs and the concomitant plasmonic coupling effect that allow us to "turn on" SERS detection of protein biomarkers. To the best of our knowledge, this is the first work in which PAapt-AuNPs conjugates are used for probing protein biomarkers, which may be enlightening for the exploitation of more extensive biological applications of aptamer-AuNPs conjugates. The results reveal that the present strategy displays excellent analytical performance. Moreover, the applicability of this strategy is demonstrated in the artificial cerebrospinal fluid (CSF) samples with satisfactory results. Except for the prominent sensitivity and practicality, our strategy offers additional advantages. The preparation of nanoconjugates is handy and easily repeated, and the synthesis cost is greatly reduced because it dispenses with the complicated labeling process. Moreover, the assay can be accomplished in 15 min, allowing rapid detection of protein biomarkers. Furthermore, simultaneous detection of Tau protein and Aβ(1-42) oligomers is realized by employing different Raman dye-coded nanoconjugates, which is valuable for accurately predicting and diagnosing AD disease. Thus, our PAapt-AuNPs conjugate-based multiplexed SERS strategy indeed creates a useful and universal platform for detecting multiple protein biomarkers and related clinical diagnosis.
Collapse
|
8
|
Du Y, Song Y, Hao J, Cai K, Liu N, Yang L, Wang L. Ratiometric fluorescence detection of O2•− based on dual-emission schiff base polymer/rhodamine-B nanocomposites. Talanta 2019; 198:316-322. [DOI: 10.1016/j.talanta.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/28/2022]
|
9
|
You JG, Tseng WL. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Anal Chim Acta 2019; 1078:101-111. [PMID: 31358207 DOI: 10.1016/j.aca.2019.05.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
A series of polymers and metal ions have been observed to be useful in triggering aggregation-induced emission (AIE) and AIE enhancement (AIEE) of thiolated gold nanoclusters (AuNCs). However, peptide-induced AIEE of thiolated AuNCs and their applications in biosensors have rarely been investigated. In this study, we showed that positively charged peptides induced efficient AIEE of negatively charged glutathione-capped AuNCs (GSH-AuNCs) through electrostatic attraction. In contrast to GSH-AuNCs, polyarginine (polyArg), a cationic peptide, stimulated the AIEE of the GSH-AuNCs, resulting in a 3.5-fold luminescence enhancement, 10-fold enhancement in quantum yield, 8-nm blueshift in the luminescence maximum, and a 2.1-fold increase in the mean luminescence lifetime. Four different AIEE-based biosensors with excellent selectivity and acceptable sensitivity were fabricated using cationic peptides as an AIEE-active trigger and as a biorecognition element. A heparin biosensor with a limit of detection (LOD) of 3 nM was constructed by combining AG73 peptide-mediated AIEE of the GSH-AuNCs and the specific interaction of AG73 peptides with heparin macromolecules. The concentration of human trypsin was selectively detected at a concentration as low as 1 nM using an arginine-glycine repeat peptide as an enzymatic substrate and as an AIEE-active trigger. Alkaline phosphatase (ALP)-catalyzed dephosphorylation of phosphopeptides paired with the corresponding product-mediated AIEE of the GSH-AuNCs was used for ALP sensing with an LOD of 0.3 U L-1. A peptide consisting of a cyclic RGD unit and an AIEE-active unit was designed to synthesize RGD-modified GSH-AuNC aggregates that can target αvβ3 integrin receptors. These AIEE-based sensors were practically applied for the quantitative determination of heparin in human plasma, trypsin in human urine, and ALP in human plasma as well as for luminescent imaging of αvβ3 integrin-overexpressing HeLa cells.
Collapse
Affiliation(s)
- Jyun-Guo You
- Department of Chemistry, National Sun Yat-sen University, Taiwan, ROC
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Taiwan, ROC; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, ROC; Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan, ROC.
| |
Collapse
|
10
|
You JG, Wang YT, Tseng WL. Adenosine-Related Compounds as an Enhancer for Peroxidase-Mimicking Activity of Nanomaterials: Application to Sensing of Heparin Level in Human Plasma and Total Sulfate Glycosaminoglycan Content in Synthetic Cerebrospinal Fluid. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37846-37854. [PMID: 30360086 DOI: 10.1021/acsami.8b13497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A variety of compounds, such as DNA and protein, have been demonstrated to be effective in suppressing the catalytic activity of peroxidase-like nanomaterials. However, little investigations have been conducted to discover new chemical compounds for amplifying the catalytic activity of peroxidase-mimicking nanomaterials. This study discloses that adenosine analogues were useful as a universal enhancer for peroxidase-mimicking nanomaterials in the hydrogen peroxide-mediated oxidation of amplex ultrared at neutral pH. The optimal adenosine analogues for improving the peroxidase-like performance of citrate-stabilized gold nanoparticles (Au NPs), citrate-capped platinum NPs, bovine serum albumin-encapsulated gold nanoclusters, and unmodified magnetite NPs were found to be adenosine diphosphate (ADP), ADP, ADP, and adenosine monophosphate, respectively. The results show that adenosine analogue-induced enhancement in the peroxidase-like activity of nanomaterials was heavily associated with the number of adsorbed adenosine analogues onto the nanomaterial surface. The analysis of ADP-modified Au NPs by electron paramagnetic resonance spectroscopy indicates that the adsorbed ADP molecules on the Au NP surface not only activated H2O2 but also strengthened the interaction between hydroxyl radicals and nanomaterials. By integrating the ADP-boosted catalytic activity of peroxidase-like Au NPs, surfen-triggered NP aggregation, and specific surfen-sulfated glycosaminoglycan (GAG) interaction, a turn-on fluorescent probe was constructed to quantify the heparin level in human plasma and total sulfate GAG content in synthetic cerebrospinal fluid.
Collapse
Affiliation(s)
- Jyun-Guo You
- Department of Chemistry , National Sun Yat-sen University , Kaohsiung City 80424 , Taiwan
| | - Yen-Ting Wang
- Department of Chemistry , National Sun Yat-sen University , Kaohsiung City 80424 , Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry , National Sun Yat-sen University , Kaohsiung City 80424 , Taiwan
- School of Pharmacy, College of Pharmacy , Kaohsiung Medical University , Kaohsiung City 80708 , Taiwan
| |
Collapse
|
11
|
Zhong L, Yun K. Fluorometric 'switch-on' detection of heparin based on a system composed of rhodamine-labeled chitosan oligosaccharide lactate, and graphene oxide. Methods Appl Fluoresc 2018; 6:035011. [PMID: 29765011 DOI: 10.1088/2050-6120/aac51c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel fluorescence 'Switch on' for the detection of heparin based on the RhB-COL/GO system was achieved. A strong fluorescence dye, Rhodamine B, was modified by chitosan oligosaccharide lactate (COL), which plays a major role in the formation of a positively charged RhB-COL complex. RhB-COL was soluble and stable in solution, which was characterized by using Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. GO sheets quenched the fluorescence intensity of RhB-COL due to electron transfer from RhB to the GO surface. The decrease in fluorescence intensity of RhB-COL with increasing GO concentration was recorded using a Cary Eclipse fluorescence spectrophotometer. On the other hand, the addition of heparin replaced GO to bind with the RhB-COL surface via an electrostatic and noncovalent bond due to the abundant negative charge, which resulted in recovery of the fluorescence intensity. This RhB-COL/GO system possessed high selectivity and good sensitivity for the detection of heparin compared to other biomolecules, such as glycine, D-glucose, hyaluronic acid, L-glutamic acid, and ascorbic acid. The linear response toward heparin was measured over the range, 0-1.8 U · ml-1, with a low detection limit of 0.04 U · ml-1. The satisfactory sensing performance of RhB-COL/GO for heparin supports new 'switch-on' sensor applications in heparin-related biomedical detection.
Collapse
Affiliation(s)
- Linlin Zhong
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | | |
Collapse
|